
Companies are optimizing their computing resources to get more transactional
performance out of the same hardware resources. At the same time, the demand and
pace of business and customer focus is increasing; they need real-time insights on the
transactional data.

In recent years, many companies have turned to No-SQL solutions that allow very high
write performance of transactions while allowing eventual consistency, but that later
require data mining and analysis.

Optimizing for
performance,

scalability and
real‑time insights

1

2 | Optimizing for performance, scalability and real‑time insights

Microsoft SQL Server has taken on this challenge and, with every release, continues
to expand the workloads in many dimensions. This chapter will discuss many of the
features that allow both high-performance transaction processing while simultaneously
allowing real-time analytics on transactional data without the need for a separate set of
ETL processes, a separate data warehouse, and the time to do that processing.

Microsoft SQL Server 2019 is built on a database engine that is number one for
TPC-E (On-Line Transaction Processing Benchmark) and TCP-H (Decision Support
Benchmark). See http://www.tpc.org for more information.

Changes in hardware architecture allow dramatic speed increases with Hybrid Buffer
Pool, which utilizes persistent memory (PMEM), also known as Storage Class Memory
(SCM).

Microsoft SQL Server 2019 can be used in the most demanding computing
environments required today. Using a variety of features and techniques, including
in-memory database operations, can make dramatic increases in your transaction
processing rate while still allowing near-real-time analysis without having to move your
transaction data to another "data warehouse" for reporting and analysis.

Microsoft SQL Server 2019 has also expanded the number of opportunities to tune
database operations automatically, along with tools and reports to allow monitoring and
optimization of queries and workloads. Comprehensive diagnostic features including
Query Store allow SQL Server 2019 to identify performance issues quickly.

By upgrading to SQL Server 2019, the customer will be able to boost query performance
without manual tuning or management. Intelligent Query Processing (IQP) helps many
workloads to run faster without making any changes to the application.

Hybrid transactional and analytical processing (HTAP)
Hybrid transactional and analytical processing (HTAP), is the application of tools and
features to be able to analyze live data without affecting transactional operations.

In the past, data warehouses were used to support the reporting and analysis of
transactional data. A data warehouse leads to many inefficiencies. First, the data has to
be exported from the transactional database and imported into a data warehouse using
ETL or custom tools and processes. Making a copy of data takes more space, takes time,
may require specialized ETL tools, and requires additional processes to be designed,
tested, and maintained. Second, access to analysis is delayed. Instead of immediate
access, business decisions are made, meaning the analysis may be delayed by hours or
even days. Enterprises can make business decisions faster when they can get real-time
operational insights. In some cases, it may be possible to affect customer behavior as it
is happening.

Clustered Columnstore Indexes | 3

Microsoft SQL Server 2019 provides several features to enable HTAP, including
memory-optimized tables, natively compiled stored procedures, and Clustered
Columnstore Indexes.

This chapter covers many of these features and will give you an understanding of the
technology and features available.

A more general discussion of HTAP is available here: https://en.wikipedia.org/wiki/
Hybrid_transactional/analytical_processing_(HTAP).

Clustered Columnstore Indexes
Clustered Columnstore indexes can make a dramatic difference and are the technology
used to optimize real-time analytics. They can achieve an order of magnitude
performance gain over a normal row table, a dramatic compression of the data, and
minimize interference with real-time transaction processing.

A columnstore has rows and columns, but the data is stored in a column format.

A rowgroup is a set of rows that are compressed into a columnstore format — a
maximum of a million rows (1,048,576).

There are an optimum number of rows in a rowgroup that are stored column-wise, and
this represents a trade-off between large overhead, if there are too few rows, and an
inability to perform in-memory operations if the rows are too big.

Each row consists of column segments, each of which represents a column from the
compressed row.

Columnstore is illustrated in Figure 1.1, showing how to load data into a non-clustered
columnstore index:

Figure 1.1: Loading data into a non-clustered columnstore index

4 | Optimizing for performance, scalability and real‑time insights

A clustered columnstore index is how the columnstore table segments are stored
in physical media. For performance reasons, and to avoid fragmenting the data, the
columnstore index may store some data in a deltastore and a list of the IDs of deleted
rows. All deltastore operations are handled by the system and not visible directly to the
user. Deltastore and columnstore data is combined when queried.

A delta rowgroup is used to store columnstore indexes until there are enough to store
in the columnstore. Once the maximum number of rows is reached, the delta rowgroup
is closed, and a background process detects, compresses, and writes the delta
rowgroup into the columnstore.

There may be more than one delta rowgroup. All delta rowgroups are described as
the deltastore. While loading data, anything less than 102,400 rows will be kept in the
deltastore until they group to the maximum size and are written to the columnstore.

Batch mode execution is used during a query to process multiple rows at once.

Loading a clustered columnstore index and the deltastore are shown in Figure 1.2.

Figure 1.2: Loading a clustered columnstore index

Further information can be found here: https://docs.microsoft.com/en-us/sql/
relational-databases/indexes/get-started-with-columnstore-for-real-time-
operational-analytics?view=sql-server-2017.

Disk-based tables versus memory-optimized tables | 5

Adding Clustered Columnstore Indexes to memory-optimized tables

When using a memory-optimized table, add a non-clustered columnstore index. A
clustered columnstore index is especially useful for running analytics on a transactional
table.

A clustered columnstore index can be added to an existing memory-optimized table, as
shown in the following code snippet:

-- Add a clustered columnstore index to a memory-optimized table

ALTER TABLE MyMemOpttable

ADD INDEX MyMemOpt_ColIndex clustered columnstore

Disk-based tables versus memory-optimized tables
There are several differences between memory-optimized and disk-based tables.

One difference is the fact that, in a disk-based table, rows are stored in 8k pages and
a page only stores rows from a single table. With memory-optimized tables, rows are
stored individually, such that one data file can contain rows from multiple memory-
optimized tables.

Indexes in a disk-based table are stored in pages just like data rows. Index changes are
logged, as are data row changes. A memory-optimized table persists the definition of
the index but is regenerated each time the memory-optimized table is loaded, such as
restarting the database. No logging of index "pages" is required.

Data operations are much different. With a memory-optimized table, all operations are
done in memory. Log records are created when an in-memory update is performed.
Any log records created in-memory are persisted to disk through a separate thread.
Disk-based table operations may perform in-place updates on non-key-columns, but
key-columns require a delete and insert. Once the operation is complete, changes are
flushed to disk.

With disk-based tables, pages may become fragmented. As changes are made, there
may be partially filled pages and pages that are not consecutive. With memory-
optimized tables, storing as rows removes fragmentation, but inserts, deletes, and
updates will leave rows that can be compacted. Compaction of the rows is executed by
means of a merge thread in the background.

6 | Optimizing for performance, scalability and real‑time insights

Additional information can be found at this Microsoft docs link:

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
comparing-disk-based-table-storage-to-memory-optimized-table-storage?view=sql-
server-2017.

In-memory OLTP
In-memory on-line transaction processing (OLTP) is available in Microsoft SQL Server
for optimizing the performance of transaction processing. In-memory OLTP is also
available for all premium Azure SQL databases. While dependent on your application,
performance gains of 2-30x have been observed.

Most of the performance comes from removing lock and latch contention between
concurrently executing transactions and is optimized for in-memory data. Although
performed in-memory, changes are logged to disk so that once committed, the
transaction is not lost even if the machine should fail.

To fully utilize in-memory OLTP, the following features are available:

•	 Memory-optimized tables are declared when you create the table.

•	 Non-durable tables, basically in-memory temporary tables for intermediate
results, are not persisted so that they do not use any disk I/O. A non-durable table
is declared with DURABILITY=SCHEMA_ONLY.

•	 Table values and table-valued parameters can be declared as in-memory types as
well.

•	 Natively compiled stored procedures, triggers, and scalar user-defined functions
are compiled when created and avoid having to compile them at execution time,
thereby speeding up operations.

Additional information can be found at the following links:

•	 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
in-memory-oltp-in-memory-optimization?view=sql-server-2017

•	 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
survey-of-initial-areas-in-in-memory-oltp?view=sql-server-2017

Planning data migration to memory-optimized tables | 7

Planning data migration to memory-optimized tables
Microsoft SQL Server Management Studio (SSMS) contains tools to help analyze and
migrate tables to memory-optimized storage.

When you right-click on a database in SSMS and click on Reports | Standard Reports |
Transaction Performance Analysis Overview, a four-quadrant report of all tables in the
database will be made:

Figure 1.3: Choosing Transaction Performance Analysis

8 | Optimizing for performance, scalability and real‑time insights

The report will look at each table and place it on the chart to show the ease of migration
versus the expected gain by migrating the table to be memory-optimized:

Figure 1.4: Recommended Tables Based on Usage

Planning data migration to memory-optimized tables | 9

Once you have identified tables that might benefit, you can right-click on individual
tables and run the Memory Optimization Advisor:

Figure 1.5: Selecting the Memory Optimization Advisor

10 | Optimizing for performance, scalability and real‑time insights

The Table Memory Optimization Advisor is a "wizard" style of user interface that will
step you through the configurations:

Figure 1.6: The Table Memory Optimization Advisor dialogue

Planning data migration to memory-optimized tables | 11

The wizard will take you through a checklist with any failed issues:

Figure 1.7: Memory Optimization Checklist

12 | Optimizing for performance, scalability and real‑time insights

The warnings dialogue will flag up other important issues.

Figure 1.8: Memory Optimization Warnings

Planning data migration to memory-optimized tables | 13

Next enter file names and check paths in the migration option dialogue.

Figure 1.9: Review Optimization options

14 | Optimizing for performance, scalability and real‑time insights

The wizard will detect the primary keys and populates the list of columns based on
the primary key metadata. To migrate to a durable memory-optimized table, a primary
key needs to be created. If there is no primary key and the table is being migrated to a
non-durable table, the wizard will not show this screen.

Figure 1.10: Review Primary Key Conversion

Planning data migration to memory-optimized tables | 15

By clicking Script you can generate a Transact-SQL script in the summary screen.

Figure 1.11: Verify Migration Actions Summary Screen

16 | Optimizing for performance, scalability and real‑time insights

The wizard will the display a report as the table migrates.

Figure 1.12: Migration progress report

Memory-optimized tables are a great feature, but you will need to plan carefully to
make sure you get the performance and transactional reliability you require.

You can create a new database specifying memory-optimized, or alter an existing
database to handle memory-optimized data. In either case, a filegroup for containing
the memory-optimized data must be created.

Planning data migration to memory-optimized tables | 17

In the following sample, we will create a memory-optimized database using SQL script:

-- Create Memory-Optimized Database

USE MASTER;

GO

CREATE DATABASE MemOptDB

 ON (Name = MemOptDB_Data, FileName = 'c:\sqldata\memoptdb_data.mdf', size
= 10 mb, maxsize = 20 mb, filegrowth = 5 mb)

 LOG ON (Name = MemOptDB_Log, FileName = 'c:\sqldata\memoptdb_log.ldf',
size = 2 mb, maxsize = 10 mb, filegrowth = 1 mb);

GO

-- Must declare a memory-optimized filegroup

ALTER DATABASE MemOptDB

 ADD FILEGROUP MemOptDB_FG contains MEMORY_OPTIMIZED_DATA;

ALTER DATABASE MemOptDB

 ADD FILE (Name = 'MemOptDB_MOFG', FileName = 'c:\sqldata\memoptdb_mofg')

 TO FILEGROUP MemOptDB_FG;

ALTER DATABASE MemOptDB

 SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON;

GO

18 | Optimizing for performance, scalability and real‑time insights

You can also make a memory-optimized database by using SQL Server Management
Studio and adding a memory-optimized filegroup:

Figure 1.13: The new database dialogue window

Natively compiled stored procedures
Natively compiled stored procedures are compiled when created and bypass the query
execution engine. The procedure is compiled when created, and also manually or when
the database or server are restarted.

A few additional concepts are introduced here, including SCHEMABINDING and BEGIN
ATOMIC, both of which are required for natively compiled stored procedures.

Natively compiled stored procedures | 19

SCHEMABINDING locks the table definition to prevent alteration after the stored
procedure is created. SCHEMABINDING allows the compiled stored procedure to be
certain of the data types involved. The tables involved in the natively compiled stored
procedure cannot be altered without dropping the SCHEMABINDING, making changes
and then reapplying the SCHEMABINDING. SHEMABINDING also requires that explicit
field names are used in the query; "select *…" will not work.

BEGIN ATOMIC is required in a natively compiled stored procedure and is only available
for a natively compiled stored procedure. In interactive (non-natively compiled)
procedures, you would use a BEGIN TRAN statement block. Using the ATOMIC block
and transaction settings will be independent of the current connection/settings as the
stored procedure may be used in different execution sessions.

If there is an existing active transaction, BEGIN ATOMIC will set a save point and roll
back to that if it fails. Otherwise, a new transaction is created and completed or rolled
back.

You indicated a natively compiled stored procedure in the create declaration of the
stored procedure using the "NATIVE_COMPILATION" directive.

In the following sample, we will create a memory-optimized table and a natively
stored procedure. Note that memory-optimized tables cannot have clustered indexes.
Memory-optimized tables are stored as rows, not in pages, as with a disk-based table:

-- Create Memory-Optimized Table

USE MemOptDB;

GO

CREATE TABLE dbo.MyMemOptTable

(

 id int not null,

 dtCreated datetime not null,

20 | Optimizing for performance, scalability and real‑time insights

 orderID nvarchar(10) not null

 CONSTRAINT pk_id PRIMARY KEY NONCLUSTERED (id)

)

 WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

GO

-- Create Natively Stored Procedure

CREATE PROCEDURE dbo.myNativeProcedure (@id int)

 WITH NATIVE_COMPILATION, SCHEMABINDING

 AS BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE =
N'us_english')

 SELECT id, dtCreated, orderID

 FROM dbo.MyMemOptTable

 WHERE id = @id

 END

GO

The table schema is locked due to the reference to a natively compiled stored
procedure. If you try to alter the table, an exception will be thrown, as shown here:

-- Try to alter the schema!

ALTER TABLE [dbo].[MyMemOpttable]

 ALTER COLUMN orderId nvarchar(20)

GO

Msg 5074, Level 16, State 1, Line 55

The object 'myNativeProcedure' is dependent on column 'orderId'.

Msg 4922, Level 16, State 9, Line 55

ALTER TABLE ALTER COLUMN orderId failed because one or more objects access
this column.

TempDB enhancements | 21

More information on natively compiled procedures can be found here:

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
creating-natively-compiled-stored-procedures?view=sql-server-2017.

TempDB enhancements
We have introduced another scalability enhancement with memory-optimized
TempDB metadata. Historically, TempDB metadata contention has been a bottleneck to
scalability for workloads running on SQL Server.

The system tables used for managing temp table metadata can be moved into latch-free
non-durable memory-optimized tables.

Enabling memory-optimized TempDB metadata

Enabling this feature in SQL Server is a two-step process:

•	 First, alter the server configuration with T-SQL

•	 Restart the service

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED tempdb_METADATA = ON

The following T-SQL command can be used to verify whether tempdb is memory-
optimized:

SELECT SERVERPROPERTY('IsTempdbMetadataMemoryOptimized')

Limitations of memory-optimized TempDB metadata

There are a few limitations associated with using this new feature.

•	 Toggling the feature on and off requires a service restart.

•	 A single transaction may not access memory-optimized tables in more than one
database. This means that any transactions that involve a memory-optimized
table in a user database will not be able to access TempDB System views in the
same transaction. If you attempt to access TempDB system views in the same
transaction as a memory-optimized table in a user database, you will receive the
following error:

A user transaction that accesses memory-optimized tables or natively
compiled modules cannot access more than one user database or databases
model and msdb, and it cannot write to master.

22 | Optimizing for performance, scalability and real‑time insights

•	 Queries against memory-optimized tables do not support locking and isolation
hints, so queries against memory-optimized TempDB catalog views will not honor
locking and isolation hints. As with other system catalog views in SQL Server, all
transactions against system views will be in READ COMMITTED (or, in this case,
READ COMMITTED SNAPSHOT) isolation.

•	 There may be some issues with columnstore indexes on temporary tables when
memory-optimized TempDB metadata is enabled. It is best to avoid columnstore
indexes on temporary tables when using memory-optimized TempDB metadata.

Intelligent Query Processing
Intelligent Query Processing (IQP) is a family of features that were introduced in
Microsoft SQL Server 2017 as adaptive query processing and has been expanded with
new features in Microsoft SQL Server 2019. By upgrading to SQL Server 2019 and with
compatibility level 150, most workloads will see performance improvements due to
added intelligence in the query optimizer.

Intelligent Query Processing features are automatically enabled based on the
"COMPATIBLITY_LEVEL" of the database. To take advantage of the latest IQP features,
set the database compatibility to 150.

Most of these are also available in Azure SQL, but it is best to check current
documentation on exactly what is available there as this changes.

Intelligent Query Processing | 23

The following table summarizes some of the IQP features.

Table 1.14: Table summarizing IQP features

•	 These features can be disabled and monitored.

•	 For more information, refer to https://docs.microsoft.com/en-us/sql/relational-
databases/performance/intelligent-query-processing?view=sql-server-2017.

24 | Optimizing for performance, scalability and real‑time insights

Hybrid Buffer Pool
Microsoft SQL Server 2019 introduces Hybrid Buffer Pool. This feature allows access to
Persistent MEMory (PMEM) devices. These persistent memory devices add a new layer
to server memory hierarchy and filling the gap between high performance / high cost
of DRAM (Dynamic Random Access Memory) and the lower cost lower performance of
file storage drives using SSD.

This memory architecture has been implemented by Intel as Intel® Optane™
Technology; refer to https://www.intel.com/content/www/us/en/products/docs/
storage/optane-technology-brief.html for more information:

Figure 1.15: Intel memory architecture

Persistent memory is integrated at the memory controller level of the CPU chip and will
retain data even when the server is powered off.

While many aspects of persistent memory devices can be realized without any software
changes, features such as Hybrid Buffer Pool can take advantage of the new storage
hierarchy and provide direct memory access to files.

For clean database pages, those that have not been modified, SQL server can directly
access them as memory. When an update is made, and then marked as dirty, the page
is copied to DRAM, changes persisted, and the page is then written back into the
persistent memory area.

Query Store | 25

To enable Hybrid Buffer Pool, the feature must be enabled at the instance level of SQL
Server. It is off by default. After enabling, the instance must be restarted:

ALTER SERVER CONFIGURATION

SET MEMORY_OPTIMIZED HYBRID_BUFFER_POOL = ON;

Furthermore, the Hybrid Buffer Pool will only operate on memory-optimized databases:

ALTER DATABASE <databaseName> SET MEMORY_OPTIMIZED = ON;

Or, in order to disable, execute the following command:

ALTER DATABASE <databaseName> SET MEMORY_OPTIMIZED = OFF;

To see the Hybrid Buffer Pool configurations and memory-optimized databases on an
instance, you can run the following queries:

SELECT * FROM sys.configurations WHERE name = 'hybrid_buffer_pool';

SELECT name, is_memory_optimized_enabled FROM sys.databases;

There are many considerations when configuring a server with persistent memory,
including the ratio of DRAM to PMEM. You can read more here:

•	 https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/
deploy-pmem

•	 https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/
hybrid-buffer-pool?view=sql-server-2017

Query Store
The Query Store in SQL Server, first introduced in SQL Server 2016, streamlines the
process of troubleshooting query execution plans. The Query Store, once enabled,
automatically captures query execution plans and runtime statistics for your analysis.
You can then use the sys.dm_db_tuning_recommendations view to discover where query
execution plan regression has occurred and use the stored procedure, sp_query_store_
force_plan, to force a specific plan that performs better.

In SQL Server 2019, we now have made some additional enhancements to the default
Query Store features. In this section, we will discuss the following topics:

•	 Changes to default parameter values when enabling Query Store

•	 A new QUERY_CAPTURE_MODE custom

•	 Support for fast forward and static cursors

26 | Optimizing for performance, scalability and real‑time insights

You can configure Query Store with SQL Server Management Studio (SSMS) or with
T-SQL statements. SSMS configuration includes turning it on and off by setting the
operation mode (off, read-only, or read/write), the Query Store size, and other settings.
You can find Query Store parameters in the properties of a database by right-clicking
on the database and selecting Query Store:

Figure 1.16: Database properties dialogue window

Query Store | 27

Changes to default parameter values

Two of the existing parameters have new default values compared to SQL Server 2017.
These parameters are MAX_STORAGE_SIZE_MB and QUERY_CAPTURE_MODE. The new default
values as of SQL Server 2019 are listed here:

•	 MAX_STORAGE_SIZE_MB has a default value of 1000 (MB)

•	 The QUERY_CAPTURE_MODE has a default value of AUTdO

QUERY_CAPTURE_MODE

In previous versions of SQL Server, the default value for the QUERY_CAPTURE_MODE was set
to ALL, and therefore all query plans were captured and stored. As mentioned in the
previous section, the default value has now been changed to AUTO.

Setting the QUERY_CAPTURE_MODE to AUTO means that no query plans or associated runtime
statistics will be captured for the first 29 executions in a single day. Query plans and
runtime statistics are not captured until the 30th execution of a plan. This default
setting can be changed by using the new custom mode.

QUERY_CAPTURE_MODE: CUSTOM

Before 2019, there were three available values for the query_capture_mode; those values
were NONE, ALL, and AUTO. We have now added a fourth option, which is CUSTOM.

The CUSTOM mode provides you with a mechanism for changing the default settings of
the Query Store. For example, the following settings can be modified when working in
CUSTOM mode:

•	 EXECUTION_COUNT

•	 TOTAL_COMPILE_CPU_TIME_MS

•	 TOTAL_EXECUTION_CPU_TIME_MS

•	 STALE_CAPTURE_POLICY_THRESHOLD

28 | Optimizing for performance, scalability and real‑time insights

First, you can verify and validate the current Query Store settings by using the sys.
database_query_store_options view:

SELECT actual_state_desc, stale_query_threshold_days, query_capture_mode_
desc,

 capture_policy_execution_count, capture_policy_total_compile_cpu_time_ms,

 capture_policy_total_execution_cpu_time_ms

FROM sys.database_query_store_options

The output is as follows:

Figure 1.17: Verifying and validating the Query Store settings

To modify the default settings, you will first change the query capture mode to custom
and then apply changes to the default values. Look at the following code by way of an
example:

ALTER DATABASE AdventureWorks2017

SET QUERY_STORE = ON

(

 QUERY_CAPTURE_MODE = CUSTOM, QUERY_CAPTURE_POLICY =

 (

 EXECUTION_COUNT = 20,

 TOTAL_COMPILE_CPU_TIME_MS = 1000,

 TOTAL_EXECUTION_CPU_TIME_MS = 100,

 STALE_CAPTURE_POLICY_THRESHOLD = 7 DAYS

)

);

Automatic tuning | 29

The output is as follows:

Figure 1.18: Modifying the default settings

Support for FAST_FORWARD and STATIC Cursors

We have added another exciting update to the Query Store. You can now force query
execution plans for fast forward and static cursors. This functionality supports
T-SQL and API cursors. Forcing execution plans for fast forward and static cursors is
supported through SSMS or T-SQL using sp_query_store_force_plan.

Automatic tuning
Automatic tuning identifies potential query performance problems, recommends
solutions, and automatically fixes problems identified.

By default, automatic tuning is disabled and must be enabled. There are two automatic
tuning features available:

•	 Automatic plan correction

•	 Automatic index management

Automatic plan correction

To take advantage of automatic plan correction, the Query Store must be enabled on
your database. Automatic plan correction is made possible by constantly monitoring
data that is stored by the Query Store.

Automatic plan correction is the process of identifying regression in your query
execution plans. Plan regression occurs when the SQL Server Query Optimizer uses
a new execution plan that performs worse than the previous plan. To identify plan
regression, the Query Store captures compile time and runtime statistics of statements
being executed.

30 | Optimizing for performance, scalability and real‑time insights

The database engine uses the data captured by the Query Store to identify when plan
regression occurs. More specifically, to identify plan regression and take necessary
action, the database engine uses the sys.dm_db_tuning_recommendations view. This
is the same view you use when manually determining which plans have experienced
regressions and which plans to force.

When plan regression is noticed, the database engine will force the last known good
plan.

The great news is that the database engine doesn't stop there; the database engine will
monitor the performance of the forced plan and verify that the performance is better
than the regressed plan. If the performance is not better, then the database engine will
unforce the plan and compile a new query execution plan.

Enabling automatic plan correction

Automatic plan correction is disabled by default. The following code can be used to
verify the status of automatic plan correction on your database:

SELECT name, desired_state_desc, actual_state_desc

FROM sys.database_automatic_tuning_options

The output is as follows:

Figure 1.19: Automatic plan correction is turned off

You enable automatic plan correction by using the following code:

ALTER DATABASE current

SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON)

Automatic tuning | 31

If you have not turned the Query Store on, then you will receive the following error:

Figure: 1.20: Error report if the Query Store is off

Automatically forced plans

The database engine uses two criteria to force query execution plans:

•	 Where the estimated CPU gain is higher than 10 seconds

•	 The number of errors in the recommended plan is lower than the number of
errors in the new plan

Forcing execution plans improves performance where query execution plan regression
has occurred, but this is a temporary solution, and these forced plans should not remain
indefinitely. Therefore, automatically forced plans are removed under the following two
conditions.

•	 Plans that are automatically forced by the database engine are not persisted
between SQL Server restarts.

•	 Forced plans are retained until a recompile occurs, for example, a statistics update
or schema change.

The following code can be used to verify the status of automatic tuning on the database:

SELECT name, desired_state_desc, actual_state_desc

FROM sys.database_automatic_tuning_options;

Figure 1.21: Verifying the status of automatic tuning on the database

32 | Optimizing for performance, scalability and real‑time insights

Lightweight query profiling
Lightweight query profiling (LWP) provides DBAs with the capability to monitor
queries in real time at a significantly reduced cost of the standard query profiling
method. The expected overhead of LWP is at 2% CPU, as compared to an overhead of
75% CPU for the standard query profiling mechanism.

For a more detailed explanation on the query profiling infrastructure, refer to https://
docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-
infrastructure?view=sqlallproducts-allversions.

New functionality in 2019

In SQL Server 2019, we have now improved LWP with new features and enhancements
to the existing capabilities.

•	 In SQL Server 2016 and 2017, lightweight query profiling was deactivated by default
and you could enable LWP at the instance level by using trace flag 7412. In 2019, we
have now turned this feature ON by default.

•	 You can also now manage this at the database level through Database Scoped
Configurations. In 2019, you have a new database scoped configuration,
lightweight_query_profiling, to enable or disable the lightweight_query_
profiling infrastructure at the database level.

•	 We have also introduced a new extended event. The new query_post_execution_
plan_profile extended event collects the equivalent of an actual execution plan
based on lightweight profiling,unlike query_post_execution_showplan, which uses
standard profiling.

•	 We also have a new DMF sys.dm_exec_query_plan_stats; this DMF returns the
equivalent of the last known actual execution plan for most queries, based on
lightweight profiling.

Lightweight query profiling | 33

The syntax for sys.dm_exec_query_plan_stats is as follows:

sys.dm_exec_query_plan_stats(plan_handle)

For a more detailed analysis, refer to this online documentation: https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-
exec-query-plan-stats-transact-sql?view=sql-server-2017.

sys.database_scoped_configurations

If you are not certain of the current status of LWP, you can use the following code
to check the status of your database scoped configurations. The value column is 1;
therefore, using the sys.database_scoped_configurations view, you see that Query Plan
Stats is currently enabled:

SELECT * FROM sys.database_scoped_configurations

WHERE name = 'LAST_QUERY_PLAN_STATS'

The output is as follows:

Figure 1.22: Check the status of the database scoped configurations

To enable or disable LWP, you will use the database scoped configuration lightweight_
query_profiling. Refer to the following example:

ALTER DATABASE SCOPED CONFIGURATION

SET LIGHTWEIGHT_QUERY_PROFILING = OFF;

34 | Optimizing for performance, scalability and real‑time insights

Activity monitor

With LWP enabled, you can now look at active expensive queries in the activity
monitor. To launch the activity monitor, right-click on the instance name from SSMS
and select Activity Monitor. Below Active Expensive Queries, you will see currently
running queries, and if you right-click on an active query, you can now examine the Live
Execution Plan!

Figure 1.23: The activity monitor

Columnstore stats in DBCC CLONEDATABASE
DBCC CLONEDATABASE creates a clone of the database that contains a copy of the schema
and statistics for troubleshooting and diagnostic purposes. More specifically, with
DBCC CLONEDATABASE, you have a lightweight, minimally invasive way to investigate
performance issues related to the query optimizer. In SQL Server 2019, we now extend
the capabilities of DBCC CLONEDATABASE by adding support for columnstore statistics.

Columnstore stats in DBCC CLONEDATABASE | 35

Columnstore statistics support

In SQL Server 2019, support has been added for columnstore statistics. Before SQL
Server 2019, manual steps were required to capture these statistics (refer to the
following link). We now automatically capture stats blobs, and therefore, these manual
steps are no longer required:

https://techcommunity.microsoft.com/t5/SQL-Server/Considerations-when-tuning-
your-queries-with-columnstore-indexes/ba-p/385294.

DBCC CLONEDATABASE validations

DBCC CLONEDATABASE performs the following validation checks. If any of these
checks fail, the operation will fail, and a copy of the database will not be provided.

•	 The source database must be a user database.

•	 The source database must be online or readable.

•	 The clone database name must not already exist.

•	 The command must not be part of a user transaction.

Understanding DBCC CLONEDATABASE syntax

DBCC CLONEDATABASE syntax with optional parameters:

DBCC CLONEDATABASE

(

 source_database_name, target_database_name

)

 [WITH { [NO_STATISTICS] [, NO_QUERYSTORE]

 [, VERIFY_CLONEDB | SERVICEBROKER] [, BACKUP_CLONEDB] }]

The following T-SQL script will create a clone of the existing database. The statistics
and Query Store data are included automatically.

DBCC CLONEDATABASE ('Source', 'Destination');

36 | Optimizing for performance, scalability and real‑time insights

The following messages are provided upon completion:

Figure 1.24: Cloned database output

To exclude statistics, you rewrite the code to include WITH NO_STATISTICS:

DBCC CLONEDATABASE ('Source', 'Destination_NoStats')

WITH NO_STATISTICS;

To exclude statistics and Query Store data, execute the following code:

DBCC CLONEDATABASE ('Source', 'Destination_NoStats_NoQueryStore')

 WITH NO_STATISTICS, NO_QUERYSTORE;

Making the clone database production-ready

Thus far, the database clones provisioned are purely for diagnostic purposes. The
option VERIFY_CLONEDB is required if you want to use the cloned database for production
use. VERIFY_CLONEDB will verify the consistency of the new database.

For example:

DBCC CLONEDATABASE ('Source', 'Destination_ProdReady')

 WITH VERIFY_CLONEDB;

The output is as follows:

Figure 1.25: Verifying the cloned database

Estimate compression for Columnstore Indexes
The stored procedure sp_estimate_data_compression_savings estimates the object
size for the requested compression state. Furthermore, you can evaluate potential
compression savings for whole tables or parts of tables; we will discuss the available
options shortly. Prior to SQL Server 2019, you were unable to use sp_estimate_data_
compression_savings for columnstore indexes and, thus, we were unable to estimate
compression for columnstore or columnstore_archive.

