

Kellyn Gorman, Allan Hirt, Dave Noderer, James Rowland-Jones,
Arun Sirpal, Dustin Ryan, and Buck Woody

Reliability, scalability, and security both on
premises and in the cloud

Introducing Microsoft
SQL Server 2019

Introducing Microsoft SQL Server 2019

Copyright © 2019 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of
the information presented. However, the information contained in this course is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Kellyn Gorman, Allan Hirt, Dave Noderer, James Rowland-Jones, Arun Sirpal,
Dustin Ryan, and Buck Woody

Additional material: Mitchell Pearson

Managing Editor: Alexander Mazonowicz

Acquisitions Editor: Alicia Wooding

Production Editor: Nitesh Thakur

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham,
Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Pramod Menon,
Bridget Neale, Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First Published: December 2019

Production Reference: 1111219

ISBN: 978-1-83882-621-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

About the Authors
Kellyn Gorman is an Azure Data Platform Architect for Microsoft with a long history
in multi-platform technology. She spends a 60/40% split between Oracle on Azure
and Analytics with her present team at Microsoft. A recent Idera ACE, a current friend
of Redgate in the Microsoft community and an Oracle ACE Director alumnus, she has
been awarded numerous awards over the years for her technical contributions and
community volunteerism. She is one of only six women part of the Oak Table, a network
for the Oracle scientist. She has extensive experience in environment optimization,
automation and architect of robust environments, specializing in multi-terabyte
management of OLAP/DSS systems. A consistent advocate for logical tuning of code
and design before hardware solutions. She's recently become known for her expertise
in DevOps, Enterprise Manager, AWR, (Automatic Workload Repository) Warehouse and
virtualization of database environments with complex cloud management. The technical
knowledge required to support these features offers great educational opportunities
to learn by attending her technical presentations, engaging with her on social media
presence as DBAKevlar or reading her blog, https://dbakevlar.com/.

Boston-based Cloud and Data Center and Data Plaform Dual MVP Allan Hirt has been
working with SQL Server since 1992 and clustering in Windows Server since the days
just after Wolfpack. He got his start with databases as an intern at SQL Solutions, which
then got purchased by Sybase where he remained an intern until the end of college.
Allan has used every version of SQL Server that Microsoft has released for Windows. He
founded his own company, Megahirtz, in 2007 and is now partners with Max Myrick in
SQLHA.

You will often find Allan speaking at local user groups, SQL Saturdays, and various
conferences like PASS Summit, SQLBits, and TechEd as well as doing various webcasts
during the years. He has authored quite a bit of content over the years including articles
for SQL Server Magazine and whitepapers for Microsoft that are up on TechNet and
MSDN. He is the author or co-author of a quite a few books, and is working on his
latest, Mission Critical SQL Server, which will be due out soon.

Dave Noderer is the CEO / President and founder of Computer Ways, Inc., a software
development company in Deerfield Beach, FL. Dave is an electrical engineer by training,
designed computers for 20 years and has been writing software since founding
Computer Ways, Inc. in 1994. Dave spent three years as an officer and director of INETA
(International .NET Association) where he oversaw the enrollment and support of
hundreds of user groups worldwide and 16 years as a Microsoft MVP. He co-founded
Florida .NET User groups in 2001 and has been holding meetups in South Florida ever
since. Since 2005, he has led the annual, free South Florida Code Camp. This event
attracts over 1000 developer attendees. Dave is involved in local community activities
as a board member of the Deerfield Beach Historical Society, the Hillsboro Lighthouse
Society, and TechLauderdale.org.

https://dbakevlar.com/

James Rowland-Jones (JRJ) is a Principal Program Manager at Microsoft. He is currently
part of the SQL Server team working on SQL Server 2019 Big Data Clusters and data
virtualization. Prior to joining SQL Server, JRJ worked extensively on Azure SQL Data
Warehouse. He helped the team launch Gen 1 of the service and led the product
management effort to bring Gen 2 into preview.

JRJ is passionate about delivering highly scalable solutions that are creative, simple
and elegant. He is also a keen advocate for the worldwide SQL community; previously
serving on the Board of Directors for PASS while also helping to build SQLBits—Europe's
largest data event. JRJ was awarded Microsoft's MVP accreditation from 2008 to 2015
for his services to the community.

For Jane, Lucy, Kate, and Oliver. Forever x.

Arun Sirpal is a SQL Server consultant and currently a Microsoft Data Platform MVP.
Specializing in both SQL Server and Microsoft Azure, he has over 12 years' experience
architecting, designing, and performance tuning physical and virtualized SQL Servers
and has a wealth of experience with designing solutions using the Azure Data Platform
including Azure SQL Database, Azure SQL Database Managed Instances, elastic pools,
and hybrid concepts. Arun is also a frequent writer, speaker, and technical reviewer and
a member of Microsoft's Azure Advisors and SQL Advisors groups.

Dustin Ryan is a Senior Cloud Solution Architect at Microsoft. Dustin has worked in the
business intelligence and data warehousing field since 2008, has spoken at community
events such as SQL Saturday, SQL Rally, and PASS Summit, and has a wide range of
experience designing and building solutions featuring SQL Server and Azure. Prior to
his time at Microsoft, Dustin worked as a business intelligence consultant and trainer
for Pragmatic Works. Dustin is also an author, contributor, and technical editor of
books.

Dustin resides outside Jacksonville, Florida with his wife, three children, and a
three‑legged cat and enjoys spending time with his family and serving at his local
church.

Buck Woody works on the Azure Data Services team at Microsoft and uses data and
technology to solve business and science problems. With over 35 years of professional
and practical experience in computer technology, he is also a popular speaker
at conferences around the world; author of over 700 articles and eight books on
databases, machine learning, and R, he also sits on various Data Science Boards at two
US Universities, and specializes in advanced data analysis techniques.

Table of Contents

About the Authors ..  c

Preface 	  i

Chapter 1: Optimizing for performance,
scalability and real‑time insights 	  1

Hybrid transactional and analytical processing (HTAP) .......................................  2

Clustered Columnstore Indexes ...  3

Adding Clustered Columnstore Indexes to memory-optimized tables ..................... 5

Disk-based tables versus memory-optimized tables ...  5

In-memory OLTP ...  6

Planning data migration to memory-optimized tables ..  7

Natively compiled stored procedures ..  18

TempDB enhancements ...  21

Enabling memory-optimized TempDB metadata ...  21

Limitations of memory-optimized TempDB metadata ..  21

Intelligent Query Processing ...  22

Hybrid Buffer Pool ..  24

Query Store ..  25

Changes to default parameter values ..  27

QUERY_CAPTURE_MODE ..  27

QUERY_CAPTURE_MODE: CUSTOM ...  27

Support for FAST_FORWARD and STATIC Cursors ...  29

Automatic tuning ..  29

Automatic plan correction ...  29

Lightweight query profiling ...  32

New functionality in 2019 ..  32

sys.database_scoped_configurations ...  33

Activity monitor ..  34

Columnstore stats in DBCC CLONEDATABASE ..  34

Columnstore statistics support ...  35

DBCC CLONEDATABASE validations ...  35

Understanding DBCC CLONEDATABASE syntax ..  35

Estimate compression for Columnstore Indexes ...  36

sp_estimate_data_compression_savings Syntax ...  37

Troubleshooting page resource waits ..  39

sys.dm_db_page_info ..  39

sys.fn_pagerescracker ..  41

Chapter 2: Enterprise Security 	  45

SQL Data Discovery and Classification ...  46

SQL Vulnerability Assessment ...  51

Transparent Data Encryption ..  55

Setup ...  57

New features – suspend and resume ...  59

Extensible Key Management ...  60

Always Encrypted ..  60

Algorithm types ...  61

Setup ...  61

Confidential computing with secure enclaves ..  61

Dynamic Data Masking ..  64

Types ..  64

Implementing DDM ..  64

Row-Level Security ..  67

Auditing ..  71

Securing connections ...  73

Configuring the MMC snap-in ..  73

Enabling via SQL Server Configuration Manager ..  74

Azure SQL Database ...  74

SSL/TLS ...  75

Firewalls ...  75

Azure Active Directory (AD) authentication ..  75

Advanced data security ..  77

Advanced threat detection ..  78

Chapter 3: High Availability and Disaster Recovery 	  81

SQL Server availability feature overview ...  82

Backup and restore ..  82

Always On features ...  83

Log shipping ..  91

What About Database Mirroring and Replication? ...  92

Availability improvements in SQL Server 2019 ...  92

Accelerated database recovery ...  92

Configuration-only replica ...  92

Certificate management in SQL Server Configuration Manager ............................  94

Clustered columnstore index online rebuild ...  95

Database scoped default setting for online and resumable DDL operations .......  95

Failover Cluster Instance Support for Machine Learning Services .........................  96

Increased number of synchronous replicas in the Enterprise edition ...................  96

Online builds or rebuilds for Clustered Columnstore Indexes ...............................  97

Read-only routing configuration in SQL Server Management Studio ....................  98

Replication for Linux-based configurations ..  99

Secondary-to-primary read/write connection redirection ....................................  100

Windows Server 2019 availability enhancements ..  102

Changing domains for a Windows Server Failover Cluster ....................................  103

Cluster Shared Volumes support for Microsoft Distributed
Transaction Coordinator ..  103

File share witness without a domain ...  103

Improved Windows Server Failover Cluster security ...  104

Storage Replica in the Standard edition ..  104

Storage Spaces Direct two-node configuration ..  106

Windows Server Failover Cluster improvements in Azure ....................................  107

Chapter 4: Hybrid Features – SQL Server and
Microsoft Azure 	  111

Backup to URL ...  112

Benefits ..  112

Requirements ..  112

The storage account ...  113

Setup ...  114

SQL Server data files in Azure ...  118

Setup and concepts ..  119

Considerations ..  121

File-snapshot backups ..  123

Setup ...  123

Extending on-premises Availability Groups to Azure .......................................  125

Replication to Azure SQL Database ..  126

Classic approach ...  127

Transactional replication ...  127

Prerequisites ...  129

Setup ...  129

Chapter 5: SQL Server 2019 on Linux 	  143

2019 platform support ...  144

Why move databases to SQL Server on Linux? ...  145

Installation and configuration ...  146

Improvements in SQL Server 2019 ...  150

Machine Learning Services on Linux ..  150

Kubernetes ..  152

Working with Docker and Linux ..  154

Change data capture ..  155

Hybrid Buffer Pool and PMEM ...  155

Distributed Transaction Coordinator on Linux ...  157

Replication ...  158

SQL Server tools ..  159

Azure Data Studio ...  159

Command-line query tools for SQL in Linux ...  163

SQLCMD ...  163

MSSQL-CLI ..  164

Enhanced focus on scripting ...  165

The SQL DBA in the Linux world ...  165

Users and groups ..  166

Azure Cloud Shell ..  166

Windows Subsystem for Linux ..  167

Root, the super-user ...  167

Chapter 6: SQL Server 2019 in Containers and Kubernetes 	  171

Why containers matter ..  172

Container technical fundamentals ...  173

Deploying an SQL Server container using Docker ..  174

Using Docker and Bash ..  179

Using local SQL Server utilities ..  179

Customizing SQL Server containers ...  180

Availability for SQL Server containers ..  180

Chapter 7: Data Virtualization 	  185

Data integration challenges ..  186

Introducing data virtualization ...  186

Data virtualization use cases ..  188

Data virtualization and hybrid transactional analytical processing ....................  188

Data virtualization and caching ..  188

Data virtualization and federated systems ...  188

Data virtualization and data lakes ..  189

Contrasting data virtualization and data movement .......................................  189

Data virtualization in SQL Server 2019 ...  190

Secure data access ..  190

The database master key ...  191

Database scoped credentials ..  191

External data sources ...  192

Supported data sources ...  193

Extending your environment using an ODBC external data source ....................  194

Accessing external data sources in Azure ...  196

External file formats ...  197

PolyBase external tables ..  198

Creating external tables with Azure Data Studio ...  200

Contrasting linked servers and external tables ..  201

Installing PolyBase in SQL Server 2019 ..  202

General pre-installation guidance ..  203

Installing PolyBase on Windows ...  204

Installing PolyBase on Linux ..  205

Installing PolyBase on SQL Server running in Docker ..  206

Post-installation steps ..  208

Installing PolyBase as a scale-out group ..  209

Tip #1: Use different resource groups for each part of the architecture ............  210

Tip #2: Create the virtual network and secure subnets before
building virtual machines ..  210

Tip #3: Place your scale-out group SQL Server instances inside one subnet ......  210

Tip #4: Complete this pre-installation checklist! ...  211

Scale-out group installation ..  212

Bringing it all together: your first data virtualization query ...........................  215

Chapter 8: Machine Learning Services
Extensibility Framework 	  219

Machine learning overview ...  220

How machine learning works ..  220

Use cases for machine learning ..  221

Languages and tools for machine learning ...  222

SQL Server 2019 Machine Learning Services architecture and
components ...  224

Components ..  226

Configuration ..  228

Machine learning using the Machine Learning Services extensibility
framework ...  230

R for machine learning in SQL Server 2019 ...  230

Python for machine learning in SQL Server 2019 ...  232

Java and machine learning in SQL Server ..  233

Machine learning using the PREDICT T-SQL command ....................................  237

Machine learning using the sp_rxPredict stored procedure ...........................  239

Libraries and packages for machine learning ...  240

Management ...  241

Security ..  242

Monitoring and Performance ..  242

Using the team data science process with Machine Learning Services .........  244

Understanding the team data science process ..  244

Phase 1: Business understanding ...  245

Phase 2: Data acquisition and understanding ..  245

Phase 3: Modeling ...  245

Phase 4: Deployment ..  245

Phase 5: Customer acceptance ...  246

Chapter 9: SQL Server 2019 Big Data Clusters 	  249

Big data overview ...  250

Applying scale-out architectures to SQL Server ..  250

Containers ...  251

Kubernetes ..  253

SQL Server on Linux ..  254

PolyBase ...  255

SQL Server 2019 big data cluster components ...  256

Installation and configuration ..  257

Platform options ...  258

Using a Kubernetes service ...  258

Using an on-premises Kubernetes installation ...  259

Working with a Dev/Test environment ..  259

Deploying the big data clusters on a Kubernetes cluster ......................................  260

Programming SQL Server 2019 big data clusters ...  262

Azure Data Studio ...  262

Relational operations ...  264

Creating scale-out tables ...  266

Creating a data lake ..  268

Working with Spark ..  269

Submitting a job from Azure Data Studio ..  270

Submitting a Spark job from IntelliJ ...  272

Spark job files and data locations ...  273

Management and monitoring ...  273

SQL Server components and operations ...  273

Kubernetes operations ..  273

SQL Server 2019 big data cluster operations ..  274

Monitoring performance and operations with Grafana ..  275

Monitoring logs with Kibana ...  276

Spark operations ...  277

Security ..  277

Access ...  278

Security setup and configuration ...  278

Authentication and authorization ..  280

Chapter 10: Enhancing the Developer Experience 	  283

SQL Graph Database ..  285

Why use SQL Graph? ...  287

Edge constraints ..  287

SQL Graph data integrity enhancements ..  290

SQL Graph MATCH support in MERGE ..  290

Using a derived table or view in a graph MATCH query ..  294

Java language extensions ..  296

Why language extensions? ..  296

Installation ...  297

Sample program ...  300

JSON ..  307

Why use JSON? ..  307

JSON example ..  308

UTF-8 support ..  309

Why UTF-8? ..  309

Temporal tables ..  310

Why temporal tables? ..  311

Temporal table example ..  311

Spatial data types ...  314

Why spacial data types? ...  315

Dealer locator example ..  315

Chapter 11: Data Warehousing 	  319

Extract-transform-load solutions with SQL Server Integration Services .......  320

Best practices for loading your data warehouse with SSIS ...................................  321

Clustered Columnstore Indexes ...  322

Partitioning ..  324

Online index management ..  325

Enabling online DML processing ...  326

Resuming online index create or rebuild ..  327

Build and rebuild online clustered columnstore indexes ......................................  329

Using ALTER DATABASE SCOPE CONFIGURATION ..  329

Creating and maintaining statistics ..  330

Automatically managing statistics ..  331

The AUTO_CREATE_STATISTICS option ..  331

The AUTO_UPDATE_STATISTICS option ...  331

The AUTO_UPDATE_STATISTICS_ASYNC option ...  331

Statistics for columnstore indexes ...  332

Modern data warehouse patterns in Azure ..  332

Introduction to Azure SQL Data Warehouse ...  333

Control node ..  333

Compute nodes ...  334

Storage ...  334

Data movement services (DMSes) ..  334

Best practices for working with Azure SQL Data Warehouse .........................  334

Reduce costs by scaling up and down  ...  335

Use PolyBase to load data quickly  ...  335

Manage the distributions of data ...  336

Do not over-partition data  ..  336

Using Azure Data Factory ..  337

New capabilities in ADF ..  337

Understanding ADF ..  338

Copying data to Azure SQL Data Warehouse ..  340

Hosting SSIS packages in ADF ..  343

Azure Data Lake Storage ..  344

Key features of Azure Data Lake Storage Gen2 ..  345

Azure Databricks ...  346

Working with streaming data in Azure Stream Analytics ................................  347

Analyzing data by using Power BI – and introduction to Power BI  ................  349

Understanding the Power BI ecosystem ..  349

Connecting Power BI to Azure SQL Data Warehouse ...  352

Chapter 12: Analysis Services 	  355

Introduction to tabular models ..  356

Introduction to multidimensional models ..  358

Enhancements in tabular mode ...  359

Query interleaving with short query bias ..  360

Memory settings for resource governance ...  360

Calculation groups ..  361

Dynamic format strings ...  362

DirectQuery ...  363

Bidirectional cross-filtering ...  366

Many-to-many relationships ...  367

Governance settings for Power BI cache refreshes ..  368

Online attach ...  368

Introducing DAX ..  369

Calculated columns ..  370

Calculated measures ..  370

Calculated tables ...  372

Row filters ..  373

DAX calculation best practices ..  375

Writing DAX queries ...  376

Using variables in DAX ...  379

Introduction to Azure Analysis Services ..  380

Selecting the right tier ..  381

Scale-up, down, pause, resume, and scale-out ...  382

Connecting to your data where it lives ..  382

Securing your data ..  383

Using familiar tools ...  383

Built-in monitoring and diagnostics ...  384

Provisioning an Azure Analysis Services server and
deploying a tabular model ...  384

Chapter 13: Power BI Report Server 	  389

SSRS versus Power BI Report Server ..  389

Report content types ..  391

Migrating existing paginated reports to Power BI Report Server ..................  392

Exploring new capabilities ...  395

Performance Analyzer ..  396

The new Modeling view ..  398

Row-level security for Power BI data models ..  398

Report theming ...  400

Managing parameter layouts ..  401

Developing KPIs ...  402

Publishing reports ..  405

Managing report access and security ..  406

Publishing mobile reports ...  409

Viewing reports in modern browsers ...  409

Viewing reports on mobile devices ...  412

Exploring Power BI reports ..  415

Using the FILTERS panel ...  416

Crossing-highlighting and cross-filtering ...  416

Sorting a visualization ..  417

Displaying a visualization's underlying data ...  417

Drill-down in a visualization ..  418

Automating report delivery with subscriptions ..  418

Pinning report items to the Power BI service ...  420

Chapter 14: Modernization to the Azure Cloud 	  423

The SQL data platform in Azure ..  424

Azure SQL Database managed instance ..  424

Deployment of a managed instance in Azure ...  425

Managed instance via the Azure portal ...  426

Managed instance via templates ..  427

Migrating SQL Server to Managed Instance ..  430

Azure Database Migration Service (DMS) ..  431

Application Connectivity ..  431

Requirements for the DMS ..  432

Data Migration Assistant ...  433

Managed Instance Sizing ...  433

Migration ..  433

Monitoring Managed Instance ..  434

SQL Server in Azure virtual machines ..  435

Creating an Azure VM from the Azure portal ..  436

Storage options for VMs ...  438

Diagnostics and advanced options ...  438

Creating a SQL Server 2019 VM from the command line in Azure .................  440

Security for SQL Server on an Azure VM ..  443

Backups of Azure VM SQL Server instances ..  444

Built-in security for Azure VMs ..  444

SQL Server IaaS agent extension ..  446

Disaster Recovery environment in the cloud ..  447

Azure Site Recovery ..  447

Extended support for SQL 2008 and 2008 R2 ..  448

Index 	  453

Get help with your
project. Talk to a
sales specialist >

Get insights from all your data. At scale. Put your
database skills to work in the cloud. Get free database
and AI services—and a $200 credit. Start free >

Be the data hero

https://aka.ms/AA669uw
https://aka.ms/AA67zgp

About

This section briefly introduces the coverage of this book, the technical skills you'll need to get
started, and the hardware and software required to complete the book.

Preface

>

ii | Preface

About Microsoft SQL Server 2019
From its humble beginnings in OS/2 with version 1.1, SQL Server has proved over and
over that it is a database that data professionals love to use. The engine is reliable, and
the T-SQL dialect has everything the developer needs to quickly write resilient, high-
performing applications.

With every release, SQL Server has improved on performance, functions, reliability, and
security. As the releases progressed, more features were added, and then entirely new
capabilities—a job engine, a reporting server, business intelligence, and data mining
systems. Groundbreaking technologies, such as in-memory databases and columnstore
indexes, made SQL Server one of the most installed Relational Database Management
Systems (RDBMSes) in the world.

In Spring of 2016, Microsoft announced that SQL Server would be made available on
the Linux operating system—something unbelievable to many technical professionals.
Addition of Platform Abstraction Layer (PAL) in SQL Server allowed it to run on Linux
operating systems such as Ubuntu, Red Hat Enterprise Linux, and SUSE. It also added
support for Linux containers, opening up amazing new possibilities for deployment and
operation.

SQL Server 2019 represents not only an evolutionary release, but a revolutionary
release. The promise of containers is completely realized with support for Kubernetes.
The new SQL Server 2019 Big Data Clusters leverages Kubernetes as the deployment
platform and adds the power of Spark and Apache Hadoop File System (HDFS).
Additionally, SQL Server 2019 supports Data Virtualization and workloads with
deployable applications running on-premises, in the cloud, and even in hybrid
configurations. This allows SQL Server 2019 to modernize your data estate and
applications with intelligence over any data—structured and unstructured.

Like the releases before it, SQL Server 2019 isn't limited to just the Windows platform.
In addition to SQL Server 2019 on Windows, Linux, and containers, Microsoft has also
announced a new product—Azure SQL Database Edge—which is a small-footprint SQL
Server engine that runs on Edge devices and the ARM platform. This allows a consistent
developer experience from the ground to the cloud and the edge. Add to this the choice
of platform and the choice of programming languages such as T-SQL, Java, C/C++,
Scala, Node.js, C#/VB.NET, Python, Ruby, and .NET Core. Need more? You can add your
own languages as well.

SQL Server 2019 supports machine learning and extensibility with R, Python, Java, and
Microsoft .NET. You're able to operationalize your machine learning models close to the
data, and developers can leverage Java and other languages server-side.

About Microsoft SQL Server 2019 | iii

But it's not just about new features. SQL Server maintains its high standards in
performance and security. This release boasts industry-leading performance. It has the
#1 OLTP performance benchmarks, and #1 DW performance on 1 TB, 3 TB, and 10 TB
non-clustered DW workloads. It supports in-memory across all workloads and is the
most consistent on-premises data platform—in both IaaS and PaaS. SQL Server 2019 has
intelligent query processing features that improve the performance of mission-critical
queries. They also support in-memory transactions and in-memory analytics for hybrid
transactional and analytical processing.

Security is essential in any data storage and processing system, and SQL Server has
prided itself on being the most secure database over the last eight years according
to the National Institute of Standards and Technology's (NIST's) Comprehensive
Vulnerability Database. SQL Server supports enterprise security and compliance with
security features such as Transparent Data Encryption, Auditing, Row-Level Security,
Dynamic Data Masking and Always Encrypted. SQL Server 2019 adds support for secure
enclaves in Always Encrypted to enable rich computations on encrypted data.

SQL Server 2019 allows you to solve modern data challenges. Data virtualization with
PolyBase allows you to use SQL Server 2019 as a data hub, directly querying data from
data sources. These sources include Oracle, SAP HANA, MongoDB, Hadoop clusters,
Cosmos DB, and SQL Server—all using T-SQL, and without separately installing client
connection software. SQL Server 2019 also gives you insights and rich new reports,
even for mobile BI with Power BI Report Server.

SQL Server 2019 improves reliability with several features in the High Availability and
Disaster Recovery architecture and works with the built-in availability features in
Kubernetes. It recovers faster with Accelerated Database Recovery.

This book covers these features, giving you a tour of each of them and diving in with
real-world examples and sample code you can try out on your own. Put together by
recognized experts and members of the team that wrote the software, we'll get you up
to speed quickly and ready to start your own adventure with this latest release of the
world's best data platform.

About the chapters

Chapter 1, Optimizing for performance and real-time insights, explains how SQL Server
2019 gets the most out of your hardware and empowers your analytics with features
such as Hybrid Buffer Pool, and hybrid transactional and analytical processing.

Chapter 2, Enterprise Security and Compliance, covers the essential elements in
SQL Server 2019 to ensure your operations are not compromised and that they stay
compliant with industry regulations for data usage.

iv | Preface

Chapter 3, High Availability and Disaster Recovery, covers SQL Server 2019's built-in
methods to increase availability, minimize downtime for maintenance, and assist when
outages occur.

Chapter 4, Hybrid Features—SQL Server and Microsoft Azure, looks at how SQL Server
2019 and Azure Storage work together to offer enterprise-ready, highly scalable, and
flexible storage solutions at competitive prices.

Chapter 5, SQL Server 2019 on Linux, looks at how SQL Server 2019 is building on the
Linux features in the 2017 release to offer even more functionality.

Chapter 6, SQL Server 2019 in Containers and Kubernetes, explains how virtualization
features have evolved and how you can deploy SQL Server across Docker and
Kubernetes.

Chapter 7, Data Virtualization, highlights SQL Server 2019's position as a modern
enterprise data hub and how you can use features such as hybrid transactional and
analytical processing to query across disparate systems.

Chapter 8, Machine Learning Services Extensibility Framework, explores machine
learning, the components and architectures in SQL Server 2019 you can use to
implement such services, and the process you follow for your solutions.

Chapter 9, SQL Server 2019 Big Data Clusters, builds on the concepts covered in the
previous chapter to show how SQL Server 2019 can be leveraged to handle scaled-out
datasets.

Chapter 10, Enhancing the Developer Experience, covers the tools to develop and
manage SQL Server projects, including Visual Studio, SQL Server Management Studio,
and—especially for cross-platform development—Visual Studio Code.

Chapter 11, Data Warehousing, highlights mission-critical security features such as
Row-Level Security, Always Encrypted, and data masking.

Chapter 12, Analysis Services, looks at how SQL Server 2019 provides superior
performance for decision support and business analytics workloads via
multidimensional mode and tabular mode.

Chapter 13, Power BI Report Server, looks at new features that are included in the latest
releases of Power BI Report Server, as well as key differences between Power BI Report
Server and SSRS.

Chapter 14, Modernization to the Azure Cloud, finishes the book with a discussion of
Azure's role regarding modernization and the data platform.

About Microsoft SQL Server 2019 | v

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "A
non-durable table is declared with DURABILITY=SCHEMA_Only."

A block of code is set as follows:

USE master;

GO

BACKUP CERTIFICATE MyServerCert

TO FILE = 'C:\SQLSERVER\MyServerCert.cer'

WITH PRIVATE KEY

(FILE = 'C:\SQLSERVER\certificate_Cert.pvk',

ENCRYPTION BY PASSWORD = '!£$Strongpasswordherewelikesqlver#')

New terms and important words are shown like this: "Most Windows Server-based
WSFCs (and SQL Server deployments) use Active Directory Domain Services (AD DS)."

Words that you see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "Go to Actions and select Get Shared Access Signature as shown."

System requirements

You will need the following hardware and software to complete the examples in this
book:

•	 SQL Server 2019 Developer edition or higher with SQL Server Management Studio.

•	 A computer that has a 1.4 GHz or faster x64 processor (2 GHz recommended)

•	 1 GB of memory (4 GB recommended)

•	 6 GB of available hard-disk space

•	 Super VGA 800 x 600 or higher resolution display

•	 Internet connection to download software, as described in applicable chapters.

•	 For non-Windows platforms such as Linux or virtual machines, please refer to the
release documentation.

Depending on your Windows configuration, you might require local administrator
rights to install or configure SQL Server 2019 and related products.

vi | Preface

Prerelease software

To help you become familiar with SQL Server 2019 as soon as possible after its release,
we wrote this book by using examples that worked with SQL Server 2019 Release
Candidate. Consequently, the final version might include new features, the user
interface might change, or features that we discuss might change or disappear. Refer to
What's New in SQL Server 2019 at https://docs.microsoft.com/en-us/sql/sql-server/
what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions for the most up-to-
date list of changes to the product.

AdventureWorks Database

Some demonstrations make a reference to the AdventureWorks database. This is a
sample database published by Microsoft and used to demonstrated SQL Server 2019's
new features. The database, along with download and setup instructions, can be
found at https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql-server-ver15.

https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15

Companies are optimizing their computing resources to get more transactional
performance out of the same hardware resources. At the same time, the demand and
pace of business and customer focus is increasing; they need real-time insights on the
transactional data.

In recent years, many companies have turned to No-SQL solutions that allow very high
write performance of transactions while allowing eventual consistency, but that later
require data mining and analysis.

Optimizing for
performance,

scalability and
real‑time insights

1

2 | Optimizing for performance, scalability and real‑time insights

Microsoft SQL Server has taken on this challenge and, with every release, continues
to expand the workloads in many dimensions. This chapter will discuss many of the
features that allow both high-performance transaction processing while simultaneously
allowing real-time analytics on transactional data without the need for a separate set of
ETL processes, a separate data warehouse, and the time to do that processing.

Microsoft SQL Server 2019 is built on a database engine that is number one for
TPC-E (On-Line Transaction Processing Benchmark) and TCP-H (Decision Support
Benchmark). See http://www.tpc.org for more information.

Changes in hardware architecture allow dramatic speed increases with Hybrid Buffer
Pool, which utilizes persistent memory (PMEM), also known as Storage Class Memory
(SCM).

Microsoft SQL Server 2019 can be used in the most demanding computing
environments required today. Using a variety of features and techniques, including
in-memory database operations, can make dramatic increases in your transaction
processing rate while still allowing near-real-time analysis without having to move your
transaction data to another "data warehouse" for reporting and analysis.

Microsoft SQL Server 2019 has also expanded the number of opportunities to tune
database operations automatically, along with tools and reports to allow monitoring and
optimization of queries and workloads. Comprehensive diagnostic features including
Query Store allow SQL Server 2019 to identify performance issues quickly.

By upgrading to SQL Server 2019, the customer will be able to boost query performance
without manual tuning or management. Intelligent Query Processing (IQP) helps many
workloads to run faster without making any changes to the application.

Hybrid transactional and analytical processing (HTAP)
Hybrid transactional and analytical processing (HTAP), is the application of tools and
features to be able to analyze live data without affecting transactional operations.

In the past, data warehouses were used to support the reporting and analysis of
transactional data. A data warehouse leads to many inefficiencies. First, the data has to
be exported from the transactional database and imported into a data warehouse using
ETL or custom tools and processes. Making a copy of data takes more space, takes time,
may require specialized ETL tools, and requires additional processes to be designed,
tested, and maintained. Second, access to analysis is delayed. Instead of immediate
access, business decisions are made, meaning the analysis may be delayed by hours or
even days. Enterprises can make business decisions faster when they can get real-time
operational insights. In some cases, it may be possible to affect customer behavior as it
is happening.

http://www.tpc.org

Clustered Columnstore Indexes | 3

Microsoft SQL Server 2019 provides several features to enable HTAP, including
memory-optimized tables, natively compiled stored procedures, and Clustered
Columnstore Indexes.

This chapter covers many of these features and will give you an understanding of the
technology and features available.

A more general discussion of HTAP is available here: https://en.wikipedia.org/wiki/
Hybrid_transactional/analytical_processing_(HTAP).

Clustered Columnstore Indexes
Clustered Columnstore indexes can make a dramatic difference and are the technology
used to optimize real-time analytics. They can achieve an order of magnitude
performance gain over a normal row table, a dramatic compression of the data, and
minimize interference with real-time transaction processing.

A columnstore has rows and columns, but the data is stored in a column format.

A rowgroup is a set of rows that are compressed into a columnstore format — a
maximum of a million rows (1,048,576).

There are an optimum number of rows in a rowgroup that are stored column-wise, and
this represents a trade-off between large overhead, if there are too few rows, and an
inability to perform in-memory operations if the rows are too big.

Each row consists of column segments, each of which represents a column from the
compressed row.

Columnstore is illustrated in Figure 1.1, showing how to load data into a non-clustered
columnstore index:

Figure 1.1: Loading data into a non-clustered columnstore index

https://en.wikipedia.org/wiki/Hybrid_transactional/analytical_processing_(HTAP)
https://en.wikipedia.org/wiki/Hybrid_transactional/analytical_processing_(HTAP)

4 | Optimizing for performance, scalability and real‑time insights

A clustered columnstore index is how the columnstore table segments are stored
in physical media. For performance reasons, and to avoid fragmenting the data, the
columnstore index may store some data in a deltastore and a list of the IDs of deleted
rows. All deltastore operations are handled by the system and not visible directly to the
user. Deltastore and columnstore data is combined when queried.

A delta rowgroup is used to store columnstore indexes until there are enough to store
in the columnstore. Once the maximum number of rows is reached, the delta rowgroup
is closed, and a background process detects, compresses, and writes the delta
rowgroup into the columnstore.

There may be more than one delta rowgroup. All delta rowgroups are described as
the deltastore. While loading data, anything less than 102,400 rows will be kept in the
deltastore until they group to the maximum size and are written to the columnstore.

Batch mode execution is used during a query to process multiple rows at once.

Loading a clustered columnstore index and the deltastore are shown in Figure 1.2.

Figure 1.2: Loading a clustered columnstore index

Further information can be found here: https://docs.microsoft.com/en-us/sql/
relational-databases/indexes/get-started-with-columnstore-for-real-time-
operational-analytics?view=sql-server-2017.

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/get-started-with-columnstore-for-real-time-operational-analytics?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/get-started-with-columnstore-for-real-time-operational-analytics?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/get-started-with-columnstore-for-real-time-operational-analytics?view=sql-server-2017

Disk-based tables versus memory-optimized tables | 5

Adding Clustered Columnstore Indexes to memory-optimized tables

When using a memory-optimized table, add a non-clustered columnstore index. A
clustered columnstore index is especially useful for running analytics on a transactional
table.

A clustered columnstore index can be added to an existing memory-optimized table, as
shown in the following code snippet:

-- Add a clustered columnstore index to a memory-optimized table

ALTER TABLE MyMemOpttable

ADD INDEX MyMemOpt_ColIndex clustered columnstore

Disk-based tables versus memory-optimized tables
There are several differences between memory-optimized and disk-based tables.

One difference is the fact that, in a disk-based table, rows are stored in 8k pages and
a page only stores rows from a single table. With memory-optimized tables, rows are
stored individually, such that one data file can contain rows from multiple memory-
optimized tables.

Indexes in a disk-based table are stored in pages just like data rows. Index changes are
logged, as are data row changes. A memory-optimized table persists the definition of
the index but is regenerated each time the memory-optimized table is loaded, such as
restarting the database. No logging of index "pages" is required.

Data operations are much different. With a memory-optimized table, all operations are
done in memory. Log records are created when an in-memory update is performed.
Any log records created in-memory are persisted to disk through a separate thread.
Disk-based table operations may perform in-place updates on non-key-columns, but
key-columns require a delete and insert. Once the operation is complete, changes are
flushed to disk.

With disk-based tables, pages may become fragmented. As changes are made, there
may be partially filled pages and pages that are not consecutive. With memory-
optimized tables, storing as rows removes fragmentation, but inserts, deletes, and
updates will leave rows that can be compacted. Compaction of the rows is executed by
means of a merge thread in the background.

6 | Optimizing for performance, scalability and real‑time insights

Additional information can be found at this Microsoft docs link:

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
comparing-disk-based-table-storage-to-memory-optimized-table-storage?view=sql-
server-2017.

In-memory OLTP
In-memory on-line transaction processing (OLTP) is available in Microsoft SQL Server
for optimizing the performance of transaction processing. In-memory OLTP is also
available for all premium Azure SQL databases. While dependent on your application,
performance gains of 2-30x have been observed.

Most of the performance comes from removing lock and latch contention between
concurrently executing transactions and is optimized for in-memory data. Although
performed in-memory, changes are logged to disk so that once committed, the
transaction is not lost even if the machine should fail.

To fully utilize in-memory OLTP, the following features are available:

•	 Memory-optimized tables are declared when you create the table.

•	 Non-durable tables, basically in-memory temporary tables for intermediate
results, are not persisted so that they do not use any disk I/O. A non-durable table
is declared with DURABILITY=SCHEMA_ONLY.

•	 Table values and table-valued parameters can be declared as in-memory types as
well.

•	 Natively compiled stored procedures, triggers, and scalar user-defined functions
are compiled when created and avoid having to compile them at execution time,
thereby speeding up operations.

Additional information can be found at the following links:

•	 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
in-memory-oltp-in-memory-optimization?view=sql-server-2017

•	 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
survey-of-initial-areas-in-in-memory-oltp?view=sql-server-2017

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/comparing-disk-based-table-storage-to-memory-optimized-table-storage?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/comparing-disk-based-table-storage-to-memory-optimized-table-storage?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/comparing-disk-based-table-storage-to-memory-optimized-table-storage?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/in-memory-oltp-in-memory-optimization?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/in-memory-oltp-in-memory-optimization?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/survey-of-initial-areas-in-in-memory-oltp?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/survey-of-initial-areas-in-in-memory-oltp?view=sql-server-2017

Planning data migration to memory-optimized tables | 7

Planning data migration to memory-optimized tables
Microsoft SQL Server Management Studio (SSMS) contains tools to help analyze and
migrate tables to memory-optimized storage.

When you right-click on a database in SSMS and click on Reports | Standard Reports |
Transaction Performance Analysis Overview, a four-quadrant report of all tables in the
database will be made:

Figure 1.3: Choosing Transaction Performance Analysis

8 | Optimizing for performance, scalability and real‑time insights

The report will look at each table and place it on the chart to show the ease of migration
versus the expected gain by migrating the table to be memory-optimized:

Figure 1.4: Recommended Tables Based on Usage

Planning data migration to memory-optimized tables | 9

Once you have identified tables that might benefit, you can right-click on individual
tables and run the Memory Optimization Advisor:

Figure 1.5: Selecting the Memory Optimization Advisor

10 | Optimizing for performance, scalability and real‑time insights

The Table Memory Optimization Advisor is a "wizard" style of user interface that will
step you through the configurations:

Figure 1.6: The Table Memory Optimization Advisor dialogue

Planning data migration to memory-optimized tables | 11

The wizard will take you through a checklist with any failed issues:

Figure 1.7: Memory Optimization Checklist

12 | Optimizing for performance, scalability and real‑time insights

The warnings dialogue will flag up other important issues.

Figure 1.8: Memory Optimization Warnings

Planning data migration to memory-optimized tables | 13

Next enter file names and check paths in the migration option dialogue.

Figure 1.9: Review Optimization options

14 | Optimizing for performance, scalability and real‑time insights

The wizard will detect the primary keys and populates the list of columns based on
the primary key metadata. To migrate to a durable memory-optimized table, a primary
key needs to be created. If there is no primary key and the table is being migrated to a
non-durable table, the wizard will not show this screen.

Figure 1.10: Review Primary Key Conversion

Planning data migration to memory-optimized tables | 15

By clicking Script you can generate a Transact-SQL script in the summary screen.

Figure 1.11: Verify Migration Actions Summary Screen

16 | Optimizing for performance, scalability and real‑time insights

The wizard will the display a report as the table migrates.

Figure 1.12: Migration progress report

Memory-optimized tables are a great feature, but you will need to plan carefully to
make sure you get the performance and transactional reliability you require.

You can create a new database specifying memory-optimized, or alter an existing
database to handle memory-optimized data. In either case, a filegroup for containing
the memory-optimized data must be created.

Planning data migration to memory-optimized tables | 17

In the following sample, we will create a memory-optimized database using SQL script:

-- Create Memory-Optimized Database

USE MASTER;

GO

CREATE DATABASE MemOptDB

 ON (Name = MemOptDB_Data, FileName = 'c:\sqldata\memoptdb_data.mdf', size
= 10 mb, maxsize = 20 mb, filegrowth = 5 mb)

 LOG ON (Name = MemOptDB_Log, FileName = 'c:\sqldata\memoptdb_log.ldf',
size = 2 mb, maxsize = 10 mb, filegrowth = 1 mb);

GO

-- Must declare a memory-optimized filegroup

ALTER DATABASE MemOptDB

 ADD FILEGROUP MemOptDB_FG contains MEMORY_OPTIMIZED_DATA;

ALTER DATABASE MemOptDB

 ADD FILE (Name = 'MemOptDB_MOFG', FileName = 'c:\sqldata\memoptdb_mofg')

 TO FILEGROUP MemOptDB_FG;

ALTER DATABASE MemOptDB

 SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON;

GO

18 | Optimizing for performance, scalability and real‑time insights

You can also make a memory-optimized database by using SQL Server Management
Studio and adding a memory-optimized filegroup:

Figure 1.13: The new database dialogue window

Natively compiled stored procedures
Natively compiled stored procedures are compiled when created and bypass the query
execution engine. The procedure is compiled when created, and also manually or when
the database or server are restarted.

A few additional concepts are introduced here, including SCHEMABINDING and BEGIN
ATOMIC, both of which are required for natively compiled stored procedures.

Natively compiled stored procedures | 19

SCHEMABINDING locks the table definition to prevent alteration after the stored
procedure is created. SCHEMABINDING allows the compiled stored procedure to be
certain of the data types involved. The tables involved in the natively compiled stored
procedure cannot be altered without dropping the SCHEMABINDING, making changes
and then reapplying the SCHEMABINDING. SHEMABINDING also requires that explicit
field names are used in the query; "select *…" will not work.

BEGIN ATOMIC is required in a natively compiled stored procedure and is only available
for a natively compiled stored procedure. In interactive (non-natively compiled)
procedures, you would use a BEGIN TRAN statement block. Using the ATOMIC block
and transaction settings will be independent of the current connection/settings as the
stored procedure may be used in different execution sessions.

If there is an existing active transaction, BEGIN ATOMIC will set a save point and roll
back to that if it fails. Otherwise, a new transaction is created and completed or rolled
back.

You indicated a natively compiled stored procedure in the create declaration of the
stored procedure using the "NATIVE_COMPILATION" directive.

In the following sample, we will create a memory-optimized table and a natively
stored procedure. Note that memory-optimized tables cannot have clustered indexes.
Memory-optimized tables are stored as rows, not in pages, as with a disk-based table:

-- Create Memory-Optimized Table

USE MemOptDB;

GO

CREATE TABLE dbo.MyMemOptTable

(

 id int not null,

 dtCreated datetime not null,

20 | Optimizing for performance, scalability and real‑time insights

 orderID nvarchar(10) not null

 CONSTRAINT pk_id PRIMARY KEY NONCLUSTERED (id)

)

 WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

GO

-- Create Natively Stored Procedure

CREATE PROCEDURE dbo.myNativeProcedure (@id int)

 WITH NATIVE_COMPILATION, SCHEMABINDING

 AS BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE =
N'us_english')

 SELECT id, dtCreated, orderID

 FROM dbo.MyMemOptTable

 WHERE id = @id

 END

GO

The table schema is locked due to the reference to a natively compiled stored
procedure. If you try to alter the table, an exception will be thrown, as shown here:

-- Try to alter the schema!

ALTER TABLE [dbo].[MyMemOpttable]

 ALTER COLUMN orderId nvarchar(20)

GO

Msg 5074, Level 16, State 1, Line 55

The object 'myNativeProcedure' is dependent on column 'orderId'.

Msg 4922, Level 16, State 9, Line 55

ALTER TABLE ALTER COLUMN orderId failed because one or more objects access
this column.

TempDB enhancements | 21

More information on natively compiled procedures can be found here:

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/
creating-natively-compiled-stored-procedures?view=sql-server-2017.

TempDB enhancements
We have introduced another scalability enhancement with memory-optimized
TempDB metadata. Historically, TempDB metadata contention has been a bottleneck to
scalability for workloads running on SQL Server.

The system tables used for managing temp table metadata can be moved into latch-free
non-durable memory-optimized tables.

Enabling memory-optimized TempDB metadata

Enabling this feature in SQL Server is a two-step process:

•	 First, alter the server configuration with T-SQL

•	 Restart the service

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED tempdb_METADATA = ON

The following T-SQL command can be used to verify whether tempdb is memory-
optimized:

SELECT SERVERPROPERTY('IsTempdbMetadataMemoryOptimized')

Limitations of memory-optimized TempDB metadata

There are a few limitations associated with using this new feature.

•	 Toggling the feature on and off requires a service restart.

•	 A single transaction may not access memory-optimized tables in more than one
database. This means that any transactions that involve a memory-optimized
table in a user database will not be able to access TempDB System views in the
same transaction. If you attempt to access TempDB system views in the same
transaction as a memory-optimized table in a user database, you will receive the
following error:

A user transaction that accesses memory-optimized tables or natively
compiled modules cannot access more than one user database or databases
model and msdb, and it cannot write to master.

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/creating-natively-compiled-stored-procedures?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/creating-natively-compiled-stored-procedures?view=sql-server-2017

22 | Optimizing for performance, scalability and real‑time insights

•	 Queries against memory-optimized tables do not support locking and isolation
hints, so queries against memory-optimized TempDB catalog views will not honor
locking and isolation hints. As with other system catalog views in SQL Server, all
transactions against system views will be in READ COMMITTED (or, in this case,
READ COMMITTED SNAPSHOT) isolation.

•	 There may be some issues with columnstore indexes on temporary tables when
memory-optimized TempDB metadata is enabled. It is best to avoid columnstore
indexes on temporary tables when using memory-optimized TempDB metadata.

Intelligent Query Processing
Intelligent Query Processing (IQP) is a family of features that were introduced in
Microsoft SQL Server 2017 as adaptive query processing and has been expanded with
new features in Microsoft SQL Server 2019. By upgrading to SQL Server 2019 and with
compatibility level 150, most workloads will see performance improvements due to
added intelligence in the query optimizer.

Intelligent Query Processing features are automatically enabled based on the
"COMPATIBLITY_LEVEL" of the database. To take advantage of the latest IQP features,
set the database compatibility to 150.

Most of these are also available in Azure SQL, but it is best to check current
documentation on exactly what is available there as this changes.

Intelligent Query Processing | 23

The following table summarizes some of the IQP features.

Table 1.14: Table summarizing IQP features

•	 These features can be disabled and monitored.

•	 For more information, refer to https://docs.microsoft.com/en-us/sql/relational-
databases/performance/intelligent-query-processing?view=sql-server-2017.

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-2017

24 | Optimizing for performance, scalability and real‑time insights

Hybrid Buffer Pool
Microsoft SQL Server 2019 introduces Hybrid Buffer Pool. This feature allows access to
Persistent MEMory (PMEM) devices. These persistent memory devices add a new layer
to server memory hierarchy and filling the gap between high performance / high cost
of DRAM (Dynamic Random Access Memory) and the lower cost lower performance of
file storage drives using SSD.

This memory architecture has been implemented by Intel as Intel® Optane™
Technology; refer to https://www.intel.com/content/www/us/en/products/docs/
storage/optane-technology-brief.html for more information:

Figure 1.15: Intel memory architecture

Persistent memory is integrated at the memory controller level of the CPU chip and will
retain data even when the server is powered off.

While many aspects of persistent memory devices can be realized without any software
changes, features such as Hybrid Buffer Pool can take advantage of the new storage
hierarchy and provide direct memory access to files.

For clean database pages, those that have not been modified, SQL server can directly
access them as memory. When an update is made, and then marked as dirty, the page
is copied to DRAM, changes persisted, and the page is then written back into the
persistent memory area.

https://www.intel.com/content/www/us/en/products/docs/storage/optane-technology-brief.html
https://www.intel.com/content/www/us/en/products/docs/storage/optane-technology-brief.html

Query Store | 25

To enable Hybrid Buffer Pool, the feature must be enabled at the instance level of SQL
Server. It is off by default. After enabling, the instance must be restarted:

ALTER SERVER CONFIGURATION

SET MEMORY_OPTIMIZED HYBRID_BUFFER_POOL = ON;

Furthermore, the Hybrid Buffer Pool will only operate on memory-optimized databases:

ALTER DATABASE <databaseName> SET MEMORY_OPTIMIZED = ON;

Or, in order to disable, execute the following command:

ALTER DATABASE <databaseName> SET MEMORY_OPTIMIZED = OFF;

To see the Hybrid Buffer Pool configurations and memory-optimized databases on an
instance, you can run the following queries:

SELECT * FROM sys.configurations WHERE name = 'hybrid_buffer_pool';

SELECT name, is_memory_optimized_enabled FROM sys.databases;

There are many considerations when configuring a server with persistent memory,
including the ratio of DRAM to PMEM. You can read more here:

•	 https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/
deploy-pmem

•	 https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/
hybrid-buffer-pool?view=sql-server-2017

Query Store
The Query Store in SQL Server, first introduced in SQL Server 2016, streamlines the
process of troubleshooting query execution plans. The Query Store, once enabled,
automatically captures query execution plans and runtime statistics for your analysis.
You can then use the sys.dm_db_tuning_recommendations view to discover where query
execution plan regression has occurred and use the stored procedure, sp_query_store_
force_plan, to force a specific plan that performs better.

In SQL Server 2019, we now have made some additional enhancements to the default
Query Store features. In this section, we will discuss the following topics:

•	 Changes to default parameter values when enabling Query Store

•	 A new QUERY_CAPTURE_MODE custom

•	 Support for fast forward and static cursors

https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/deploy-pmem
https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/deploy-pmem
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/hybrid-buffer-pool?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/hybrid-buffer-pool?view=sql-server-2017

26 | Optimizing for performance, scalability and real‑time insights

You can configure Query Store with SQL Server Management Studio (SSMS) or with
T-SQL statements. SSMS configuration includes turning it on and off by setting the
operation mode (off, read-only, or read/write), the Query Store size, and other settings.
You can find Query Store parameters in the properties of a database by right-clicking
on the database and selecting Query Store:

Figure 1.16: Database properties dialogue window

Query Store | 27

Changes to default parameter values

Two of the existing parameters have new default values compared to SQL Server 2017.
These parameters are MAX_STORAGE_SIZE_MB and QUERY_CAPTURE_MODE. The new default
values as of SQL Server 2019 are listed here:

•	 MAX_STORAGE_SIZE_MB has a default value of 1000 (MB)

•	 The QUERY_CAPTURE_MODE has a default value of AUTdO

QUERY_CAPTURE_MODE

In previous versions of SQL Server, the default value for the QUERY_CAPTURE_MODE was set
to ALL, and therefore all query plans were captured and stored. As mentioned in the
previous section, the default value has now been changed to AUTO.

Setting the QUERY_CAPTURE_MODE to AUTO means that no query plans or associated runtime
statistics will be captured for the first 29 executions in a single day. Query plans and
runtime statistics are not captured until the 30th execution of a plan. This default
setting can be changed by using the new custom mode.

QUERY_CAPTURE_MODE: CUSTOM

Before 2019, there were three available values for the query_capture_mode; those values
were NONE, ALL, and AUTO. We have now added a fourth option, which is CUSTOM.

The CUSTOM mode provides you with a mechanism for changing the default settings of
the Query Store. For example, the following settings can be modified when working in
CUSTOM mode:

•	 EXECUTION_COUNT

•	 TOTAL_COMPILE_CPU_TIME_MS

•	 TOTAL_EXECUTION_CPU_TIME_MS

•	 STALE_CAPTURE_POLICY_THRESHOLD

28 | Optimizing for performance, scalability and real‑time insights

First, you can verify and validate the current Query Store settings by using the sys.
database_query_store_options view:

SELECT actual_state_desc, stale_query_threshold_days, query_capture_mode_
desc,

 capture_policy_execution_count, capture_policy_total_compile_cpu_time_ms,

 capture_policy_total_execution_cpu_time_ms

FROM sys.database_query_store_options

The output is as follows:

Figure 1.17: Verifying and validating the Query Store settings

To modify the default settings, you will first change the query capture mode to custom
and then apply changes to the default values. Look at the following code by way of an
example:

ALTER DATABASE AdventureWorks2017

SET QUERY_STORE = ON

(

 QUERY_CAPTURE_MODE = CUSTOM, QUERY_CAPTURE_POLICY =

 (

 EXECUTION_COUNT = 20,

 TOTAL_COMPILE_CPU_TIME_MS = 1000,

 TOTAL_EXECUTION_CPU_TIME_MS = 100,

 STALE_CAPTURE_POLICY_THRESHOLD = 7 DAYS

)

);

Automatic tuning | 29

The output is as follows:

Figure 1.18: Modifying the default settings

Support for FAST_FORWARD and STATIC Cursors

We have added another exciting update to the Query Store. You can now force query
execution plans for fast forward and static cursors. This functionality supports
T-SQL and API cursors. Forcing execution plans for fast forward and static cursors is
supported through SSMS or T-SQL using sp_query_store_force_plan.

Automatic tuning
Automatic tuning identifies potential query performance problems, recommends
solutions, and automatically fixes problems identified.

By default, automatic tuning is disabled and must be enabled. There are two automatic
tuning features available:

•	 Automatic plan correction

•	 Automatic index management

Automatic plan correction

To take advantage of automatic plan correction, the Query Store must be enabled on
your database. Automatic plan correction is made possible by constantly monitoring
data that is stored by the Query Store.

Automatic plan correction is the process of identifying regression in your query
execution plans. Plan regression occurs when the SQL Server Query Optimizer uses
a new execution plan that performs worse than the previous plan. To identify plan
regression, the Query Store captures compile time and runtime statistics of statements
being executed.

30 | Optimizing for performance, scalability and real‑time insights

The database engine uses the data captured by the Query Store to identify when plan
regression occurs. More specifically, to identify plan regression and take necessary
action, the database engine uses the sys.dm_db_tuning_recommendations view. This
is the same view you use when manually determining which plans have experienced
regressions and which plans to force.

When plan regression is noticed, the database engine will force the last known good
plan.

The great news is that the database engine doesn't stop there; the database engine will
monitor the performance of the forced plan and verify that the performance is better
than the regressed plan. If the performance is not better, then the database engine will
unforce the plan and compile a new query execution plan.

Enabling automatic plan correction

Automatic plan correction is disabled by default. The following code can be used to
verify the status of automatic plan correction on your database:

SELECT name, desired_state_desc, actual_state_desc

FROM sys.database_automatic_tuning_options

The output is as follows:

Figure 1.19: Automatic plan correction is turned off

You enable automatic plan correction by using the following code:

ALTER DATABASE current

SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON)

Automatic tuning | 31

If you have not turned the Query Store on, then you will receive the following error:

Figure: 1.20: Error report if the Query Store is off

Automatically forced plans

The database engine uses two criteria to force query execution plans:

•	 Where the estimated CPU gain is higher than 10 seconds

•	 The number of errors in the recommended plan is lower than the number of
errors in the new plan

Forcing execution plans improves performance where query execution plan regression
has occurred, but this is a temporary solution, and these forced plans should not remain
indefinitely. Therefore, automatically forced plans are removed under the following two
conditions.

•	 Plans that are automatically forced by the database engine are not persisted
between SQL Server restarts.

•	 Forced plans are retained until a recompile occurs, for example, a statistics update
or schema change.

The following code can be used to verify the status of automatic tuning on the database:

SELECT name, desired_state_desc, actual_state_desc

FROM sys.database_automatic_tuning_options;

Figure 1.21: Verifying the status of automatic tuning on the database

32 | Optimizing for performance, scalability and real‑time insights

Lightweight query profiling
Lightweight query profiling (LWP) provides DBAs with the capability to monitor
queries in real time at a significantly reduced cost of the standard query profiling
method. The expected overhead of LWP is at 2% CPU, as compared to an overhead of
75% CPU for the standard query profiling mechanism.

For a more detailed explanation on the query profiling infrastructure, refer to https://
docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-
infrastructure?view=sqlallproducts-allversions.

New functionality in 2019

In SQL Server 2019, we have now improved LWP with new features and enhancements
to the existing capabilities.

•	 In SQL Server 2016 and 2017, lightweight query profiling was deactivated by default
and you could enable LWP at the instance level by using trace flag 7412. In 2019, we
have now turned this feature ON by default.

•	 You can also now manage this at the database level through Database Scoped
Configurations. In 2019, you have a new database scoped configuration,
lightweight_query_profiling, to enable or disable the lightweight_query_
profiling infrastructure at the database level.

•	 We have also introduced a new extended event. The new query_post_execution_
plan_profile extended event collects the equivalent of an actual execution plan
based on lightweight profiling,unlike query_post_execution_showplan, which uses
standard profiling.

•	 We also have a new DMF sys.dm_exec_query_plan_stats; this DMF returns the
equivalent of the last known actual execution plan for most queries, based on
lightweight profiling.

https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sqlallproducts-allversions

Lightweight query profiling | 33

The syntax for sys.dm_exec_query_plan_stats is as follows:

sys.dm_exec_query_plan_stats(plan_handle)

For a more detailed analysis, refer to this online documentation: https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-
exec-query-plan-stats-transact-sql?view=sql-server-2017.

sys.database_scoped_configurations

If you are not certain of the current status of LWP, you can use the following code
to check the status of your database scoped configurations. The value column is 1;
therefore, using the sys.database_scoped_configurations view, you see that Query Plan
Stats is currently enabled:

SELECT * FROM sys.database_scoped_configurations

WHERE name = 'LAST_QUERY_PLAN_STATS'

The output is as follows:

Figure 1.22: Check the status of the database scoped configurations

To enable or disable LWP, you will use the database scoped configuration lightweight_
query_profiling. Refer to the following example:

ALTER DATABASE SCOPED CONFIGURATION

SET LIGHTWEIGHT_QUERY_PROFILING = OFF;

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql?view=sql-server-2017

34 | Optimizing for performance, scalability and real‑time insights

Activity monitor

With LWP enabled, you can now look at active expensive queries in the activity
monitor. To launch the activity monitor, right-click on the instance name from SSMS
and select Activity Monitor. Below Active Expensive Queries, you will see currently
running queries, and if you right-click on an active query, you can now examine the Live
Execution Plan!

Figure 1.23: The activity monitor

Columnstore stats in DBCC CLONEDATABASE
DBCC CLONEDATABASE creates a clone of the database that contains a copy of the schema
and statistics for troubleshooting and diagnostic purposes. More specifically, with
DBCC CLONEDATABASE, you have a lightweight, minimally invasive way to investigate
performance issues related to the query optimizer. In SQL Server 2019, we now extend
the capabilities of DBCC CLONEDATABASE by adding support for columnstore statistics.

Columnstore stats in DBCC CLONEDATABASE | 35

Columnstore statistics support

In SQL Server 2019, support has been added for columnstore statistics. Before SQL
Server 2019, manual steps were required to capture these statistics (refer to the
following link). We now automatically capture stats blobs, and therefore, these manual
steps are no longer required:

https://techcommunity.microsoft.com/t5/SQL-Server/Considerations-when-tuning-
your-queries-with-columnstore-indexes/ba-p/385294.

DBCC CLONEDATABASE validations

DBCC CLONEDATABASE performs the following validation checks. If any of these
checks fail, the operation will fail, and a copy of the database will not be provided.

•	 The source database must be a user database.

•	 The source database must be online or readable.

•	 The clone database name must not already exist.

•	 The command must not be part of a user transaction.

Understanding DBCC CLONEDATABASE syntax

DBCC CLONEDATABASE syntax with optional parameters:

DBCC CLONEDATABASE

(

 source_database_name, target_database_name

)

 [WITH { [NO_STATISTICS] [, NO_QUERYSTORE]

 [, VERIFY_CLONEDB | SERVICEBROKER] [, BACKUP_CLONEDB] }]

The following T-SQL script will create a clone of the existing database. The statistics
and Query Store data are included automatically.

DBCC CLONEDATABASE ('Source', 'Destination');

https://techcommunity.microsoft.com/t5/SQL-Server/Considerations-when-tuning-your-queries-with-columnstore-indexes/ba-p/385294
https://techcommunity.microsoft.com/t5/SQL-Server/Considerations-when-tuning-your-queries-with-columnstore-indexes/ba-p/385294

36 | Optimizing for performance, scalability and real‑time insights

The following messages are provided upon completion:

Figure 1.24: Cloned database output

To exclude statistics, you rewrite the code to include WITH NO_STATISTICS:

DBCC CLONEDATABASE ('Source', 'Destination_NoStats')

WITH NO_STATISTICS;

To exclude statistics and Query Store data, execute the following code:

DBCC CLONEDATABASE ('Source', 'Destination_NoStats_NoQueryStore')

 WITH NO_STATISTICS, NO_QUERYSTORE;

Making the clone database production-ready

Thus far, the database clones provisioned are purely for diagnostic purposes. The
option VERIFY_CLONEDB is required if you want to use the cloned database for production
use. VERIFY_CLONEDB will verify the consistency of the new database.

For example:

DBCC CLONEDATABASE ('Source', 'Destination_ProdReady')

 WITH VERIFY_CLONEDB;

The output is as follows:

Figure 1.25: Verifying the cloned database

Estimate compression for Columnstore Indexes
The stored procedure sp_estimate_data_compression_savings estimates the object
size for the requested compression state. Furthermore, you can evaluate potential
compression savings for whole tables or parts of tables; we will discuss the available
options shortly. Prior to SQL Server 2019, you were unable to use sp_estimate_data_
compression_savings for columnstore indexes and, thus, we were unable to estimate
compression for columnstore or columnstore_archive.

Estimate compression for Columnstore Indexes | 37

We have extended the capability for sp_estimate_data_compression_savings to include
support for COLUMNSTORE and COLUMNSTORE_ARCHIVE.

sp_estimate_data_compression_savings Syntax

Look at the following T-SQL syntax:

sp_estimate_data_compression_savings

 [@schema_name =] 'schema_name'

 , [@object_name =] 'object_name'

 , [@index_id =] index_id

 , [@partition_number =] partition_number

 , [@data_compression =] 'data_compression'

[;]

The following argument descriptions are provided by docs.microsoft.com: https://
docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/
sp-estimate-data-compression-savings-transact-sql?view=sql-server-2017.

Table 1.26: Description of the arguments

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql?view=sql-server-2017

38 | Optimizing for performance, scalability and real‑time insights

There are currently eight available outputs; you will primarily focus on the four outputs
related to size.

Output:

object_name

schema_name

index_id

partition_number

size_with_current_compression_setting (KB)

size_with_requested_compression_setting (KB)

sample_size_with_current_compression_setting (KB)

sample_size_with_current_requested_setting (KB)

The following is an example of the procedure in action, followed by a comparison of the
space savings for page and columnstore compression:

EXEC sp_estimate_data_compression_savings

 @schema_name = 'dbo',

 @object_name = 'MySourceTable',

 @index_id = NULL,

 @partition_number = NULL,

 @data_compression = 'PAGE'

Example with PAGE Compression:

Figure 1.27: PAGE Compression

EXEC sp_estimate_data_compression_savings

 @schema_name = 'dbo',

 @object_name = 'MySourceTable',

 @index_id = NULL,

 @partition_number = NULL,

 @data_compression = 'COLUMNSTORE'

Troubleshooting page resource waits | 39

Example with COLUMNSTORE compression:

Figure 1.28: COLUMNSTORE compression

In this example, page compression has estimated space savings of roughly 45%, and
columnstore compression has estimated space savings of 68%.

Troubleshooting page resource waits
A new and exciting feature in SQL Server 2019 is sys.dm_db_page_info. This new
dynamic management function (DMF) retrieves useful page information, such as page_
id, file_id, index_id, object_id, and page_type, that can be used for troubleshooting
and debugging performance issues in SQL Server. Historically, troubleshooting
has involved the use of DBCC Page and the undocumented DMF sys.dm_db_page_
allocations.

Unlike DBCC Page, which provides the entire contents of a page, sys.dm_db_page_info
only returns header information about pages. Fortunately, this will be sufficient for
most troubleshooting and performance tuning scenarios.

This section will discuss the following topics:

•	 Database State permissions

•	 sys.dm_db_page_info parameters

•	 New column page_resource in (sys.dm_exec_requests, sys.processes)

•	 sys.fn_PageResCracker

sys.dm_db_page_info

First, to leverage this new DMF, we require the VIEW DATABASE STATE permission. The
following code can be used to provide access:

GRANT VIEW DATABASE STATE TO [login]

There are four required parameters:

sys.dm_db_page_info (DatabaseId, FileId, PageId, Mode)

40 | Optimizing for performance, scalability and real‑time insights

The following argument descriptions are provided by docs.microsoft.com:

Table 1.29: The description of the arguments

You can execute the function by itself if you have all the requisite parameters. The
mode is set to Limited in this example, and this will return NULL values for all description
columns:

SELECT OBJECT_NAME(object_id) as TableName,*

FROM SYS.dm_db_page_info(6, 1, 1368, 'Limited')

The output is as follows:

Figure 1.30: Output with LIMITED mode

Using the Detailed mode, you will get much more descriptive information than
provided in the previous example. In this example, you can see that the NULL values have
been replaced with descriptive information.

SELECT OBJECT_NAME(object_id) as TableName,*

FROM SYS.dm_db_page_info(6, 1, 1368, 'Detailed')

http://docs.microsoft.com

Troubleshooting page resource waits | 41

The output is as follows:

Figure 1.31: Output with Detailed mode

To see a full list of all the columns returned, go to https://docs.microsoft.com/en-us/
sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-
transact-sql?view=sqlallproducts-allversions.

sys.fn_pagerescracker

In the previous example, you saw how to pass parameters to this new function
manually. Fortunately, the parameters can be directly retrieved from sys.dm_exec_
requests or sys.processes. To make this work, we added a new column called page_
resource. The page_resource column returns the page ID, the file ID, and the database
ID. It is also important to highlight that the new page_resource column in sys.dm_exec_
request will be NULL when WAIT_RESOURCE does not have a valid value.

However, the page_resource column stores the data as an 8-byte hexadecimal value
that needs to be converted. Therefore, we have added a new function called sys.fn_
pagerescracker. This function returns the page ID, the file ID, and the database ID for
the given page_resource value.

It is important to note that we require the user to have VIEW SERVER STATE permission
on the server to run sys.fn_PageResCracker.

In this example, the page_resource column is being passed into the sys.fn_
PageResCracker function, and then the database ID, file ID, and Page ID are passed to
sys.dm_db_page_info:

SELECT OBJECT_NAME(page_info.object_id) AS TableName,page_info.*

FROM sys.dm_exec_requests AS d

CROSS APPLY sys.fn_PageResCracker (d.page_resource) AS r

CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id, r.page_id,

'Detailed') AS page_info

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-transact-sql?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-transact-sql?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-transact-sql?view=sqlallproducts-allversions

42 | Optimizing for performance, scalability and real‑time insights

The output is as follows:

Figure 1.32: Page resource column is being passed into a function

You can read more here: https://docs.microsoft.com/en-us/sql/relational-databases/
system-functions/sys-fn-pagerescracker-transact-sql?view=sql-server-2017.

https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/sys-fn-pagerescracker-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/sys-fn-pagerescracker-transact-sql?view=sql-server-2017

Securing sensitive data and staying compliant with industry regulations such as
PCI-DSS (Payment Card Industry Data Security Standard) and GDPR (General Data
Protection Regulation) is very important. A compromised database system can lead
to a loss of revenue, regulatory fines, and a negative impact on the reputation of your
business.

Tracking compliance and maintaining database security requires significant admin
resources. SQL Server 2019 has tools such as Data Discovery and Classification, and
SQL Vulnerability Assessment tools that allow DBAs to identify compliance issues and
tag and classify specific datasets to ensure compliance.

SQL Server 2019 offers many security features that address these challenges, such as
TDE (Transparent Data Encryption), Always Encrypted, Auditing, Dynamic Data Masking
and Row-Level Security.

Enterprise Security

2

46 | Enterprise Security

Combined with further enhancements to certificate management in SQL Server 2019,
support for TLS 1.2, and confidential computing initiatives such as secure enclaves, you
can be sure that you can build and deploy solutions to the highest security standards
while becoming GDPR and PCI-DSS compliant. All these features are also available
within Azure SQL Database.

SQL Data Discovery and Classification
The Data Discovery and Classification feature enables you to identify, classify, and label
data held across your SQL Server estate. The sheer volume of data now held within
databases makes this a challenging process, coupled with the fact that regulatory
mandates such as GDPR, SOX, and PCI demand that businesses protect sensitive data.
So you can see how this feature will help. Before you can develop a security strategy for
your SQL Server databases, it makes logical sense to know what data you hold, and from
this you can then classify and label the more sensitive data and implement the relevant
security controls, therefore minimizing potential sensitive data leaks.

Key components for this feature include two metadata attributes, labels and
information types. Labels are used to define the sensitivity of data. Information types
are used to provide additional granularity into the types of data stored in a column. As
you can see in Figure 2.1, email addresses and phone numbers have been classified as
contact information under the GDPR label.

Figure 2.1: Classification confirmation

SQL Data Discovery and Classification | 47

To start the classification process, you will need to right-click on the database and find
the Data Discovery and Classification option (Figure 2.2).

Figure 2.2: Accessing the Classify Data... option from the menu

While you are connected to the database via SSMS (SQL Server Management Studio),
you can issue the following query to get a really good summary of the classification that
has just taken place:

SELECT

    schema_name(O.schema_id) AS schema_name,

    O.NAME AS table_name,

    C.NAME AS column_name,

    information_type,

    sensitivity_label

FROM

    (

        SELECT

            IT.major_id,

48 | Enterprise Security

            IT.minor_id,

            IT.information_type,

            L.sensitivity_label

        FROM

        (

            SELECT

                major_id,

                minor_id,

                value AS information_type

            FROM sys.extended_properties

            WHERE NAME = 'sys_information_type_name'

        ) IT

        FULL OUTER JOIN

        (

            SELECT

                major_id,

                minor_id,

                value AS sensitivity_label

            FROM sys.extended_properties

            WHERE NAME = 'sys_sensitivity_label_name'

        ) L

        ON IT.major_id = L.major_id AND IT.minor_id = L.minor_id

    ) EP

    JOIN sys.objects O

    ON  EP.major_id = O.object_id

    JOIN sys.columns C

    ON  EP.major_id = C.object_id AND EP.minor_id = C.column_id

Figure 2.3: Successfully connected to the database

SQL Data Discovery and Classification | 49

You can delegate this to SQL Server and let it carry out a review of the data and an
automatic implementation of the classification process.

Figure 2.4: Classification changes been implemeted

Note

With SQL Server 2019, is it not possible to use T-SQL to add metadata about the
sensitivity classification, such as the following:

ADD SENSITIVITY CLASSIFICATION TO

 <object_name> [, ...n]

 WITH (<sensitivity_label_option> [, ...n]

This is only possible with Azure SQL Database.

50 | Enterprise Security

Another advantage of this feature is the visibility of the classification states in the form
of a report, which you can then export to different formats as required. This will benefit
you regarding compliance and auditing. The following screenshot shows a copy of a
report in Excel format:

Figure 2.5: SQL Data Classification Report

Once you understand your data via the classification processes, you can then leverage
different features from SQL Server 2019, such as Always Encrypted or Data Masking, to
protect these sensitive columns.

SQL Vulnerability Assessment | 51

SQL Vulnerability Assessment
While we're thinking about a sound security strategy for SQL Server, it is important
to address current security issues that exist within your database estate. Where
should you start? What technical work is required to address the issues found? SQL
Vulnerability Assessment is the tool for this task. It will allow you to improve your
internal processes and harden your security across a dynamic and ever-changing
database environment.

Note

Vulnerability Assessment is supported for SQL Server 2012 and later and requires
SSMS 17.4+.

This feature carries out a scan against the database(s) using a pre-built knowledge
base of rules that will flag security concerns such as elevated accounts and security
misconfigurations. To start this assessment, you will need to right-click on the database
and click on Vulnerability Assessment (as shown in the following screenshot) and start
a scan:

Figure 2.6: Accessing the vulnerabilities scan from the Tasks menu

52 | Enterprise Security

There is a requirement to state a location to save the assessment to. This will be the
location where you can open and view historical reports:

Figure 2.7: The scan dialog box

Note

The scan is lightweight and read-only. It will not cause performance degradation.

SQL Vulnerability Assessment | 53

Figure 2.8: Vulnerability Assessment Results

As you can see, a wide range of different checks is carried out. The ones that fail will
need special attention, especially if they are flagged as High Risk. You can think of this
as your own personal security dashboard.

As you review your assessment results, you can mark specific results as being an
acceptable baseline in your environment:

Figure 2.9: Assessment results

This is simply a way of approving a check so that it will be classed as a pass in future
scans:

Figure 2.10: Baseline approval dialog box

54 | Enterprise Security

To address issues flagged by this feature, there is no need for you to be a security
expert or even research the T-SQL scripts needed to further investigate and fix the
issues. This is all provided by the tool. As you can see in the following screenshot, the
VA2108 check, relating to the authentication and authorization of a specific account,
failed. We purposely implemented this rogue account to see how the tool picks this up.

Figure 2.11: The VA2108 check

If you click the blue box in the preceding screenshot, it will show the code the scan
used to deduce its conclusions:

SELECT user_name(sr.member_principal_id) as [Principal], user_name(sr.role_
principal_id) as [Role], type_desc as [Principal Type]

FROM sys.database_role_members sr, sys.database_principals sp

WHERE sp.principal_id = sr.member_principal_id

AND sr.role_principal_id IN (user_id('bulkadmin'),

SQL Vulnerability Assessment | 55

                             user_id('db_accessadmin'),

                             user_id('db_securityadmin'),

                             user_id('db_ddladmin'),

                             user_id('db_backupoperator'))

ORDER BY sp.name

This gives the following result:

Figure 2.12: Assigned role is db_securityadmin

Clearly this is an issue. Having an SQL login granted the db_securityadmin role is bad
practice. To resolve this, you then view the following remediation script, as shown in
the red box in Figure 2.11:

ALTER ROLE [db_securityadmin] DROP MEMBER [SQLadmin]

Transparent Data Encryption

Transparent Data Encryption (TDE) is also known as "encryption at rest" and uses
Advanced Encryption Standard (AES) encryption algorithms using keys sized at 128,
192, and 256 bits (AES_128, AES_192, and AES_256). This feature performs real-time
I/O encryption and decryption of database files, and as a side effect, it also encrypts
backups. The purpose of TDE is to prevent stolen copies of database files (or backups)
from being attached/restored and queried. This feature is also important when running
SQL Server in a hosted environment due to the risk that someone is trying to read the
file system directly. This feature is available in both Standard and Enterprise edition of
SQL Server 2019, and is on by default when using Azure SQL Database and Azure SQL
Database Managed Instance.

56 | Enterprise Security

A common approach to implementing TDE is the traditional encryption hierarchy
shown in Figure 2.13:

Figure 2.13: Transparent database encryption architecture

SQL Vulnerability Assessment | 57

Setup

Following this hierarchy when setting up TDE in SQL Server 2019 is straightforward.
This snippet shows the T-SQL code required to create the MASTER KEY, CERTIFICATE, and
DATABASE ENCRYPTION KEY.

USE master;  

GO  

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<password>';

GO

CREATE CERTIFICATE MyServerCert WITH SUBJECT = 'My DEK Certificate';

GO

USE [MicrosoftDB];  

GO  

CREATE DATABASE ENCRYPTION KEY  

WITH ALGORITHM = AES_256  

ENCRYPTION BY SERVER CERTIFICATE MyServerCert;  

GO

Note

The certificate used for encrypting the database encryption key has not been
backed up. You should immediately back up the certificate and the private key
associated with the certificate. If the certificate ever becomes unavailable or if you
must restore or attach the database on another server, you must have backups
of both the certificate and the private key or you will not be able to open the
database.

58 | Enterprise Security

A warning appears from SQL Server asking us to back up the CERTIFICATE and PRIVATE
KEY, which is important to do for recovery purposes. Use this code to do so:

USE master;

GO

BACKUP CERTIFICATE MyServerCert

TO FILE = 'C:\SQLSERVER\MyServerCert.cer'

WITH PRIVATE KEY

(FILE = 'C:\SQLSERVER\certificate_Cert.pvk',

ENCRYPTION BY PASSWORD = '!£$Strongpasswordherewelikesqlver#')

ALTER DATABASE  [MicrosoftDB]

SET ENCRYPTION ON;  

GO  

Confirmation of successfully encrypting the database can be found by running the
following query:

SELECT DB_NAME(database_id) AS DatabaseName, encryption_state,

encryption_state_desc =

CASE encryption_state

         WHEN '0' THEN 'No database encryption key present, no encryption'

         WHEN '1' THEN 'Unencrypted'

         WHEN '2' THEN 'Encryption in progress'

         WHEN '3' THEN 'Encrypted'

 WHEN '4' THEN 'Key change in progress'

 WHEN '5' THEN 'Decryption in progress'

 WHEN '6' THEN 'Protection change in progress '

         ELSE 'No Status'

      END,

percent_complete, create_date, key_algorithm, key_length, encryptor_
type,encryption_scan_modify_date

  FROM sys.dm_database_encryption_keys

SQL Vulnerability Assessment | 59

Figure 2.2 shows the encrypted state of both the user database and tempdb:

Figure 2.14: Encrypting databases

New features – suspend and resume

When configuring TDE for a database, SQL Server must perform an initial encryption
scan. This can sometimes be problematic with a large and highly transactional database.
With SQL Server 2019, you can now suspend and resume this scan to fit your needs
during specific maintenance windows. Prior to SQL Server 2019, the only way to stop
the encryption scan was with Trace Flag 5004.

The T-SQL command that suspends the encryption scan is as follows:

ALTER DATABASE [AdventureDB] SET ENCRYPTION SUSPEND;

If you check the error log in Figure 2.15, you will see that the scan has been paused.

Figure 2.15: Error log

To resume the scan, you then issue the RESUME command shown in the following
snippet. Checking the state of encryption via the query from the previous section will
show the percentage of completion which is the last point it resumed from.

ALTER DATABASE [AdventureDB] SET ENCRYPTION RESUME;

Figure 2.16: Completed scan percentage

The error log confirms that the scan is complete:

Figure 2.17: Confirmation that scan is complete

60 | Enterprise Security

You will also notice a new column within the table called encryption_scan_modify_date.
This is stored within the sys.dm_database_encryption_keys dynamic management view.
It holds the date and time of the last encryption scan state change, which is based on
when the scan was last suspended or resumed. Suspending and resuming a scan also
applies to the decryption process when encryption is turned off for TDE.

If you restart SQL Server while the encryption scan is in a suspended state, a message
will be written to the error log to highlight this fact. It will also show you the RESUME
command needed to complete the encryption scan:

Figure 2.18: Error log with the RESUME command

Extensible Key Management

When configuring TDE, you can follow the steps we've looked at so far to implement
a traditional key hierarchy strategy. However, you can also use Azure Key Vault as an
Extensible Key Management (EKM) provider, which uses an asymmetric key that is
outside SQL Server, rather than a certificate within the master database. As you can
imagine, this adds another layer of security, which is usually the preferred strategy for
many organizations.

For further information on how to implement EKM using Azure Key Vault, please see
the following guide: https://docs.microsoft.com/en-us/sql/relational-databases/
security/encryption/setup-steps-for-extensible-key-management-using-the-azure-
key-vault?view=sql-server-ver15.

Always Encrypted
SQL Server 2019 includes Always Encrypted, an encryption technology first introduced
in SQL Server 2016 which allows clients to encrypt sensitive data inside client
applications with the key benefit of never revealing the encryption keys to the database
engine.

When using Always Encrypted, data never appears in plain text when querying it, and it
is not even exposed in plain text in the memory of the SQL Server process. Only client
applications that have access to the relevant keys can see the data. This feature is ideal
for protecting data from even highly privileged users such as database administrators
and system administrators. It does not prevent them from administrating the servers,
but it does prevent them from viewing highly sensitive data such as bank account
details.

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/setup-steps-for-extensible-key-management-using-the-azure-key-vault?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/setup-steps-for-extensible-key-management-using-the-azure-key-vault?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/setup-steps-for-extensible-key-management-using-the-azure-key-vault?view=sql-server-ver15

Confidential computing with secure enclaves | 61

Algorithm types

Always Encrypted uses the AEAD_AES_256_CBC_HMAC_SHA_256 algorithm. There are two
variations: deterministic and randomized. The deterministic encryption always
generates the same encrypted value of a given input value. With this encryption type
it is possible for your application to perform point lookups, equality joins, indexing and
grouping on the encrypted column. The only potential issue of using this encryption
type is if the encrypted column contains few values or if the statistics about plaintext
data distribution is publicly known – in such cases, an attacker might be able to guess
the underlaying plaintext values.

The randomized variation is far less predictable hence more secure but this means that
it does not allow such operations mentioned earlier on potential encrypted columns.
The different encryption types raise interesting choices for application developers. For
example, if you know that your applications must issue group or join-based queries on
encrypted columns, then you will have no choice but to use the deterministic algorithm.
With the introduction of secure enclaves in SQL Server 2019 support for richer
functionality on encrypted columns is now possible, which will be discussed later in the
chapter.

Setup

Setting up Always Encrypted is straightforward. For a complete tutorial on how to do
this please see the following link: https://docs.microsoft.com/en-us/sql/relational-
databases/security/encryption/always-encrypted-wizard?view=sql-server-ver15.

Confidential computing with secure enclaves
As mentioned earlier, the main two challenges with Always Encrypted are the
reduced query functionality and making it necessary to move data out of database for
cryptographic operations, such as initial encryption or key rotation. To address this,
Microsoft leverages cutting-edge secure enclave technology to allow rich computations
and cryptographic operations to take place inside the database engine.

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-wizard?view=sql-server-ver15

62 | Enterprise Security

The enclave is a special, isolated, and protected region of memory. There is no way to
view the data or the code inside the enclave from the outside, even with a debugger.
You can think of it as a black box. This means that an enclave is the perfect place to
process highly sensitive information and decrypt it, if necessary. While there are several
enclave technologies available, SQL Server 2019 supports Virtualization Based Security
(VBS) secure memory enclaves in Windows Server 2019. The Windows hypervisor
ensures the isolation of VBS enclaves. The below screen shows what you would see if
you try to access the memory of a VBS enclave with a debugger.

Figure 2.19: When trying to access the memory of an enclave with a debugger

References:

•	 https://aka.ms/AlwaysEncryptedWithSecureEnclaves

•	 https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-
security-vbs-memory-enclaves-data-protection-through-isolation/

How does this benefit us from a database perspective? It now means that new types
of computations, such as pattern matching (LIKE%) and comparisons (including range
comparison operators, such as > and <), are now supported on encrypted database
columns; this was not possible before. SQL Server delegates these computations to the
enclave via the client driver over a secure channel. The data is then safely decrypted
and processed in the enclave. Another advantage of this new feature is that it allows you
to perform cryptographic operations, such as encrypting a column or re-encrypting it
to change (rotate) a column encryption key, inside the enclave without moving the data
outside of the database, thus boosting the performance of such tasks, especially for
larger tables.

https://aka.ms/AlwaysEncryptedWithSecureEnclaves
https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-protection-through-isolation/
https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-protection-through-isolation/

Confidential computing with secure enclaves | 63

How is trust in the enclave established? There is an attestation service, which is used to
verify that the enclave is trustworthy before the client attempts to use it:

Figure 2.20: The architecture of Always Encrypted with secure enclaves

SQL Server 2019 supports attesting VBS enclaves using Host Guardian Service (HGS),
which is a role in Windows Server 2019. HGS can be configured to use one of two
attestation modes:

•	 Host key attestation authorizes a host by proving it possesses a known and
trusted private key. Host key attestation does not allow a client application to
verify the Windows hypervisor on the machine hosting SQL Server has not been
compromised. Therefore, this attestation mode, which is easy to configure and
supported in a broad range of environments, can be only recommended for testing
and development.

•	 TPM attestation validates hardware measurements to make sure a host runs only
the correct binaries and security policies. It provides a SQL client application
with a proof that the code running inside the enclave is a genuine Microsoft SQL
Server enclave library and that the Windows hypervisor on the machine hosting
SQL Server has not been compromised. That is why the TPM attestation is
recommended for production environments. TPM attestation requires SQL Server
runs on a machine supporting TPM 2.0.

For a step-by-step tutorial on how to get started with Always Encrypted using enclaves,
see: https://aka.ms/AlwaysEncryptedEnclavesTutorial.

https://aka.ms/AlwaysEncryptedEnclavesTutorial

64 | Enterprise Security

Dynamic Data Masking
SQL Server 2019 provides dynamic data masking (DDM), which limits sensitive data
exposure by masking it to non-privileged users. This is not really a form of encryption
at disk but nevertheless is useful in certain scenarios, such as if you want to hide
sections of a credit card number from support staff personnel. Traditionally, this logic
would have been implemented at the application layer; however, this is not the case
now because it is controlled within SQL Server.

Note

A masking rule cannot be applied on a column that is Always Encrypted.

Types

You can choose from four different masks where selection usually depends on your data
types:

•	 DEFAULT: Full masking according to the data types of the designated fields

•	 EMAIL: A masking method that exposes the first letter of an email address, such as
aXXX@XXXX.com

•	 RANDOM: A random masking function for use on any numeric type to mask the
original value with a random value within a specified range

•	 CUSTOM: Exposes the first and last letters and adds a custom padding string in
the middle

Implementing DDM

The following example creates a table with different masking rules applied to the
columns. FirstName will only expose the first letter, Phone will use the default masking
rule, and for Email, we will apply the email masking rule:

CREATE TABLE dbo.Users

  (UserID INT IDENTITY PRIMARY KEY,  

   FirstName VARCHAR(150) MASKED WITH (FUNCTION = 'partial(1,"XXXXX",0)')
NULL,  

   LastName VARCHAR(150) NOT NULL,  

Dynamic Data Masking | 65

   Phone VARCHAR(20) MASKED WITH (FUNCTION = 'default()') NULL,  

   Email VARCHAR(150) MASKED WITH (FUNCTION = 'email()') NULL);  

   GO

  

INSERT dbo.Users

(FirstName, LastName, Phone, Email)

VALUES  

('Arun', 'Sirpal', '777-232-232', 'Asirpal@company.com'),  

('Tony', 'Mulsti', '111-778-555', 'TMulsti@company.com'),  

('Pedro', 'Lee', '890-097-866', 'PLee@company.com') ,

('Bob', 'Lee', '787-097-866', 'Blee@company.com');  

GO

Figure 2.21: Table with masking rules applied

To confirm your masking rules, the following query should be executed:

SELECT OBJECT_NAME(object_id) TableName,

    name ColumnName,

    masking_function MaskFunction

  FROM sys.masked_columns

  ORDER BY TableName, ColumnName;

Figure 2.22: Table with query executed

66 | Enterprise Security

If you connect to the database as a SQL login that has only read access (as indicated by
the following code), you will see the masked data. In other words, the login does not
have the right to see the true value of the data, as demonstrated in the following code.

EXECUTE AS USER = 'support'

SELECT SUSER_NAME(), USER_NAME();  

SELECT * FROM  dbo.Users

Figure 2.23: Table with data partially masked

If you decide to allow the user to see the data in its native form, you can issue the GRANT
UNMASK command as shown here:

GRANT UNMASK TO support;

 GO

 EXECUTE AS USER = 'support'

SELECT SUSER_NAME(), USER_NAME();  

SELECT * FROM  dbo.Users

Figure 2.24: Table with data unmasked

Row-Level Security | 67

Issue the REVOKE command to remove this capability:

REVOKE UNMASK TO support;

EXECUTE AS USER = 'support'

SELECT SUSER_NAME(), USER_NAME();  

SELECT * FROM  dbo.Users

Figure 2.25: Table with unmask revoked

As you can see, implementing this feature requires no changes to application code and
can be controlled via permissions within SQL Server by deducing who has and has not
got the ability to view the data. Even though this is not a true form of encryption at disk
level, this feature is only a small element of the wider security strategy for your SQL
servers and is best used in conjunction with other features discussed so far to provide
broader defense.

Row-Level Security
Row-level security (RLS) gives database administrators and developers the ability to
allow fine-grained access control over rows within tables. Rows can be filtered based
on the execution context of a query. Central to this feature is the concept of a security
policy where, via an inline table-valued function, you would write your filtering logic
to control access with complete transparency to the application. Real-world examples
include situations in which you would like to prevent unauthorized access to certain
rows for specific logins, for example, only giving access to a super-user to view all rows
within a sensitive table and allowing other users to see rows that only the super-user
should see. The following example shows how simple it is to implement RLS via T-SQL.
At a high level, access to a specific table called rls.All_Patient is defined by a column
called GroupAccessLevel, which is mapped to two SQL logins called GlobalManager and
General. As you can imagine, the General login will not be able to view the data that
GlobalManager is authorized to see.

68 | Enterprise Security

The following code is the T-SQL required to create the table-value function and the
security policy with the state set to ON:

CREATE FUNCTION rls.fn_securitypredicate(@GroupAccessLevel AS sysname)  

    RETURNS TABLE  

WITH SCHEMABINDING  

AS  

    RETURN SELECT 1 AS fn_securitypredicate_result

WHERE @GroupAccessLevel = USER_NAME() OR USER_NAME() = 'GlobalManager';

GO

CREATE SECURITY POLICY UserFilter  

ADD FILTER PREDICATE RLS.fn_securitypredicate(GroupAccessLevel)

ON rls.All_Patient

WITH (STATE = ON);  

GO

GRANT SELECT ON RLS.fn_securitypredicate TO GlobalManager;  

GRANT SELECT ON RLS.fn_securitypredicate TO General  

Running the code as the GlobalManager user will return all rows within the table, in
contrast with the General user, who will only see the rows that they are entitled to see:

EXECUTE AS USER = 'GlobalManager';  

  SELECT * FROM rls.All_Patient

  ORDER BY AreaID

REVERT;

Row-Level Security | 69

The following screenshot confirms the data that the General user can only see:

Figure 2.26: A table with access set to GlobalManager

Executing the following code switches the execution context to the General user:

EXECUTE AS USER = 'General';  

  SELECT * FROM rls.All_Patient

  ORDER BY AreaID

REVERT;

Figure 2.27: The same table with access set to General

70 | Enterprise Security

If you check the properties of the clustered index scan, you will see the predicate being
evaluated:

Figure 2.28: Selecting properties of clustered index scan

Figure 2.29: The predicate evaulation dialog box

This type of predicate is called a filter predicate, but you also can create a block
predicate to explicitly block write operations (such as AFTER INSERT, AFTER UPDATE, BEFORE
UPDATE, and BEFORE DELETE) that violate the predicate.

For administration purposes, you can query the following system tables to see the
security policies and security predicates that have been defined:

SELECT * FROM sys.security_policies

Figure 2.30: Output of a security_policies query

Auditing | 71

SELECT * FROM sys.security_predicates

Figure 2.31: Output of a security_predicates query

To maintain the best performance, it is best practice to not involve many table joins
within the predicate function, to avoid type conversions, and to avoid recursion.

Auditing
If implementing an auditing strategy is paramount to your business to satisfy
regulations such as the Health Insurance Portability and Accountability Act (HIPAA),
the Sarbanes-Oxley Act (SOX), and the Payment Card Industry Data Security Standard
(PCI-DSS), then leveraging SQL Server 2019 to achieve this is possible with SQL Server
Audit. With this feature, you will be able to ensure accountability for actions made
against your SQL servers and databases, and you can store this log information in local
files or the event log for future analysis, all of which are common goals of an auditing
strategy.

To implement SQL Server auditing, first the main audit should be created at the server
level, which dictates where the files will be located for information to be logged to.
From this main audit, you can then create a server-level audit specification. At this level,
you will be able to audit actions such as server role changes and whether a database
has been created or deleted. Alternatively, you can scope this feature to the database
level via a database-level audit specification, where you can audit actions directly on
the database schema and schema objects, such as tables, views, stored procedures, and
functions (see https://docs.microsoft.com/en-us/sql/relational-databases/security/
auditing/sql-server-audit-action-groups-and-actions?view=sql-server-ver15 for a full
list of the capabilities for both server- and database-level auditing).

The following example shows the code required to audit a specific table,
[HumanResources].[EmployeePayHistory], for a DELETE activity using a database AUDIT
specification:

USE [master]

GO

CREATE SERVER AUDIT [MainAudit]

TO FILE

(  FILEPATH = N'D:\AUDIT\'

  ,MAXSIZE = 1024 MB

https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions?view=sql-server-ver15

72 | Enterprise Security

  ,MAX_FILES = 10

  ,RESERVE_DISK_SPACE = OFF

)

WITH

(  QUEUE_DELAY = 1000

  ,ON_FAILURE = CONTINUE

  ,AUDIT_GUID = 'A164444-d7c8-4258-a842-9f2111f2c755'

)

ALTER SERVER AUDIT [MainAudit] WITH (STATE = ON)

GO

USE [AdventureDB]

GO

CREATE DATABASE AUDIT SPECIFICATION [DeleteAuditHR]

FOR SERVER AUDIT [MainAudit]

ADD (DELETE ON OBJECT::[HumanResources].[EmployeePayHistory] BY [dbo])

GO

DECLARE @files VARCHAR(200) = 'D:\AUDIT*.sqlaudit';

SELECT * FROM sys.fn_get_audit_file (@files, default, default)

Figure 2.32: The results statement dialog

As you can see, it is very simple to set up auditing, and you can do so with minimal
performance overhead.

Securing connections | 73

Securing connections
Service Socket Layer (SSL) and Transport Layer Security (TLS) are cryptographic
protocols that provide encryption between two endpoints, such as a calling application
and the SQL Server. This is a form of "encryption in transit." This is a very important
concept for companies that process payments. They have to adhere to PCI-DSS. SSL is
the predecessor to TLS and supports the need to address vulnerabilities found with SSL,
thus providing more secure cipher suites and algorithms. Microsoft's recommendation
is to use TLS 1.2 encryption, which supports all releases of SQL Server (assuming that
the latest service packs are installed) up to and including SQL Server 2019. The ultimate
goal of using TLS is to establish a secure connection. This is done by SQL Server
sending its TLS certificate to the client. The client must then validate its copy of the
Certification Authority (CA) certificate. The CA is a trusted third party that is trusted
by both the owner of the certificate and the party relying upon the certificate.

Assuming that you have configured the Microsoft Management Console (MMC) snap-
in, you will then need to use it to install the certificate on the server. It can then be used
by SQL Server to encrypt connections.

Configuring the MMC snap-in

To open the MMC certificates snap-in, follow these steps:

1.	 To open the MMC console, click Start, and then click Run. In the Run dialog box,
type the following:

MMC

2.	 In the Console menu, click Add/Remove Snap-in.

3.	 Click Add, and then click Certificates. Click Add again.

4.	 You are prompted to open the snap-in for the current user account, the service
account, or for the computer account. Select Computer Account.

5.	 Select Local computer, and then click Finish.

6.	 Click Close in the Add Standalone Snap-in dialog box.

7.	 Click OK in the Add/Remove Snap-in dialog box. Your installed certificates are
located in the Certificates folder in the Personal container.

For the complete steps to install a certificate, please see the following link: https://
support.microsoft.com/en-us/help/316898/how-to-enable-ssl-encryption-for-an-
instance-of-sql-server-by-using-mi.

https://support.microsoft.com/en-us/help/316898/how-to-enable-ssl-encryption-for-an-instance-of-sql-server-by-using-mi
https://support.microsoft.com/en-us/help/316898/how-to-enable-ssl-encryption-for-an-instance-of-sql-server-by-using-mi
https://support.microsoft.com/en-us/help/316898/how-to-enable-ssl-encryption-for-an-instance-of-sql-server-by-using-mi

74 | Enterprise Security

Enabling via SQL Server Configuration Manager

For SQL Server to use the certificate, you will need to select it within SQL Server
Configuration Manager and then finally set Force Encryption to Yes:

Figure 2.33: Protocols for RED Properties dialog box

In SQL Server 2019, improvements have been made to SQL Server Configuration
Manager, such as optimizations for administration and setting up certificates. First,
more information is presented to the administrator regarding expiration dates, a simple
but useful addition. More importantly, from an availability group or failover cluster
perspective, it is now possible to deploy certificates across multiple machines that
form the failover cluster or availability group. This reduces the administration overhead
of separately installing and managing certificates across multiple nodes, which can
become time-consuming for complex architectures.

Azure SQL Database
Security is absolutely at the forefront of Microsoft's strategy, and this is no different
when operating with their cloud services. If you want to run database workloads in
Microsoft Azure, you can be assured that Azure SQL Database (the PaaS offering) has
all the features mentioned in this chapter so far, and more. For the remainder of this
chapter, Azure SQL Database's specific security features will be discussed.

Azure SQL Database | 75

SSL/TLS

SSL/TLS is enforced for all connections. This means that data between the
database and client is encrypted in transit (as mentioned in the previous section).
For your application connection string, you must ensure that Encrypt=True and
TrustServerCertificate=False because doing this will help prevent man-in-the-middle
attacks. No manual certificate configuration is needed; this is all done by Microsoft as
the default standard.

A typical connection string should look like this:

Server=tcp:yourserver.database.windows.net,1433;Initial Catalog=yourdatabase;

Persist Security Info=False;User ID={your_username};Password={your_
password};MultipleActiveResultSets=False;Encrypt=True;

TrustServerCertificate=False;Connection Timeout=30;

Firewalls

Microsoft implements a "deny all by default" policy for Azure SQL Database. That
is, when you create a "logical" SQL server in Azure to host your database you as the
administrator will need to make further configuration changes to allow for successful
access. This is usually in the form of firewall rules (which can be scoped to the server
level or the database level), where you would state which IP addresses are allowed
access and Virtual Network (VNet) rules.

VNet rules should be implemented where possible. A VNet contains a subnet address;
you can then create a VNet rule that is scoped to the server level, which will allow
access to databases on that server for that specific subnet. This means that if you have
virtual machines built within a specific subnet bound to the VNet rule, it will have
access to Azure SQL Database (assuming that the Microsoft.sql endpoint is enabled).
Both firewall rules and VNet rules can be used together if there is a need.

Azure Active Directory (AD) authentication

With Azure AD authentication, you can now centrally manage database users from
one central location. This approach is not only much more secure than SQL Server
authentication, but also allows for password rotation to occur in a single place. You can
control permissions via groups, thus making security management easier. Configuring
this feature will also allow you to connect to the database using multi factor
authentication (MFA), which includes verification options such as text messages, phone
calls, mobile app integration, and smart cards with PINs. This idea of MFA is also built
into tools such as SSMS, thus providing an extra layer of security for users that require
access to Azure SQL Database. It is a highly recommended approach.

76 | Enterprise Security

The trust architecture is shown in Figure 2.47 and the setup is simple:

Figure 2.34: The trust architecture

Complete configuration steps can be found at https://docs.microsoft.com/en-us/
azure/sql-database/sql-database-aad-authentication. Once configuration is complete,
you will be able to issue the following code to create an Azure AD-based database user
once you have connected to the "logical" SQL Server as the Azure AD Admin user:

CREATE USER [Anita.Holly@Adventureworks.com]

FROM EXTERNAL PROVIDER;

GRANT CONNECT TO [Anita.Holly@Adventureworks.com]

EXEC sp_addrolemember 'db_datareader', 'Anita.Holly@Adventureworks.com';

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-aad-authentication
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-aad-authentication

Azure SQL Database | 77

Advanced data security

Advanced Data Security (ADS) is a suite of advanced features that you can enable for
a small cost. The cost of this is based on Azure Security Center standard tier pricing
(it's free for the first 30 days). The cost includes Data Discovery & Classification,
Vulnerability Assessment (similar to what we discussed previously for on-premises SQL
servers), and Advanced Threat Protection for the server:

Figure 2.35: ADS suite dashboard

To enable this, you will need to navigate to the Security section of the database via the
Azure portal:

Figure 2.36: Setting up a security alert on the Azure portal

78 | Enterprise Security

Once you have selected the Advanced Data Security section, you will be prompted with
the cost associated with the feature:

Figure 2.37: Cost prompt dialog

Finally, you will then have the option of enabling the setting as shown here:

Figure 2.38: Advanced Data Security dialog

Advanced threat detection

Threat detection is the only feature from the previous section that is not available
with on-premises SQL Server 2019, but it is available with Azure SQL Database. This
service detects anomalous activities that indicate unusual and potentially harmful
attempts to access or exploit databases such as SQL injection, brute force attacks,
and unknown IP address analysis. Microsoft analyzes a vast amount of telemetry
regarding cloud network activity and uses advanced machine learning algorithms for
this proactive service. It is best practice to enable this setting. There is a cost associated
with it, but the benefit outweighs this minimal cost. Cyber attacks are becoming
more sophisticated, and this is where threat prevention and detection tools form an
important piece of your defense strategy. This setting can be applied to the server or
the database.

Azure SQL Database | 79

Figure 2.48 shows a real-time email alert being sent to administrators:

Figure 2.39: Real-time vulnerability alert

You can see the VULNERABLE STATEMENT that was used; a classic SQL injection-style attack
was detected.

Hopefully, you can see the vast amount of effort that has gone into Azure SQL Database
and SQL Server 2019 regarding security. All the tools and features discussed in this
chapter, when put together, will help you create an enterprise-level data platform of
trust.

If you'd like to try out any of the techniques shown in this book,
get started with a 180-day free trial of SQL Server 2019

https://www.microsoft.com/sql-server/sql-server-downloads

It is important to safeguard your data not only from a security perspective but to
ensure that it is available during an outage – planned or unplanned. This is known as
providing business continuity. The ability to respond to local incidents and get back
up and running is known as High Availability (HA). For example, say the storage on a
physical server fails and you need to switch production to another server quickly. That
should be possible within the same data center with minimal impact.

A more catastrophic event, such as the loss of a data center, triggers what is commonly
referred to as Disaster Recovery (DR or D/R). D/R generally involves more than just
ensuring that a database is ready for use elsewhere. For example, before bringing
a database or instance online, ensuring that core aspects of the infrastructure are
functioning is crucial.

High Availability and
Disaster Recovery

3

82 | High Availability and Disaster Recovery

Both HA and D/R matter and have one purpose: business continuity. Microsoft's
SQL Server 2019 has built-in methods to increase availability, minimize downtime for
maintenance, and assist when outages occur. This chapter will not only cover what
those features are but also what's new in SQL Server as well as the improvements in
Windows Server 2019 that impact SQL Server availability configurations.

SQL Server availability feature overview
This section will provide an overview of the availability features in SQL Server 2019.
All of the features described in this section are supported using physical or virtualized
servers (virtual machines, or VMs), whether those VMs are on-premises running under
a traditional hypervisor or up in the public cloud as Infrastructure as a Service (IaaS).
Other platform-based features, such as those provided by a hypervisor, are often part of
an overall availability strategy for SQL Server but are outside the scope of this chapter.

Backup and restore

The cornerstone of any business continuity plan is a solid backup strategy with tested
restores. In other words, the backup and restore feature is the most basic form of
availability in any edition of SQL Server. No matter what else you implement, be it
one of the built-in features of SQL Server or some third-party utility, ensure this key
component of business continuity is implemented properly to meet your Recovery
Time Objectives (RTOs), or how long you have to get up and running, and Recovery
Point Objectives (RPOs), or how much data loss can be tolerated in a worst-case
scenario.

SQL Server can generate three kinds of backups for databases: full, differential, and
transaction log. A full backup is the entire database, a differential contains the changes
since the last full backup, and a transaction log backup contains log records that were
not backed up in a previous transaction log backup. Transaction log backups cannot be
generated when a database is configured with the simple recovery model.

Backups can be created locally and stored on drives attached to the server, to a file
share (copied or generated), or can even be backed up to a URL that uses Azure to store
SQL Server backups. More information on backups to URLs can be found at https://
docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-
backup-to-url?view=sql-server-2017. Backups should never be a single point of failure,
and should always be copied somewhere else to be safe, even if some are kept locally to
reduce the time it would take to restore if needed.

Third-party backup utilities can be used with SQL Server as long as they generate a
proper SQL Server backup. If not done properly, SQL Server databases could suffer
negative consequences. Check with your preferred backup vendor to see how they
integrate with SQL Server.

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-2017

SQL Server availability feature overview | 83

Always On features

Always On is an umbrella term that covers two features, not just one: Availability
Groups (AGs) and Failover Cluster Instances (FCIs). This section will describe the two
features. Links to more detailed documentation on how to plan and configure AGs and
FCIs will be included at the end of the chapter.

Always On AGs

For configurations that are deployed for availability, an AG provides database-level
protection and if using the Enterprise edition, additional instances known as secondary
replicas can also be used as more than standby servers. The instance that contains
the read/write database(s) for an AG is known as the primary replica. An instance can
be a primary replica for one AG and a secondary replica for another. Replicas can be
on-premises (physical or virtual) or up in the public cloud with IaaS VMs for a hybrid
solution. Having a replica up in Azure or another cloud provider is one way to provide
easier disaster recovery when you do not have your own additional data center.

AGs are supported by both Linux- and Windows Server-based configurations of SQL
Server. As of SQL Server 2016, AGs are in both Standard and Enterprise edition. No
matter which edition of SQL Server you use, the only limitation on the number of AGs is
system resources.

For a secondary replica to be promoted and function as a primary, it needs to have
everything required for applications and end users. Anything outside of the database,
such as logins, linked servers, SQL Server Agent jobs, and more, must be synchronized
manually.

Data synchronization can be done synchronously or asynchronously. The only
difference between asynchronous and synchronous synchronization is that the primary
replica waits for an acknowledgment from a secondary replica that the transaction
has been hardened in its transaction log. For more information on the synchronization
process, see https://docs.microsoft.com/en-us/sql/database-engine/availability-
groups/windows/availability-modes-always-on-availability-groups?view=sql-
server-2017.

By default, the AG feature is disabled in SQL Server. Enabling it is done via SQL Server
Configuration Manager or PowerShell with Windows Server, or by using the mssql-conf
utility or editing the /var/opt/mssql/mssql.conf file with Linux. Enabling AGs requires a
restart of the SQL Server instance.

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/availability-modes-always-on-availability-groups?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/availability-modes-always-on-availability-groups?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/availability-modes-always-on-availability-groups?view=sql-server-2017

84 | High Availability and Disaster Recovery

There are three main AG variants, which will be discussed in this section:

1.	 Traditional AGs

2.	 Distributed AGs

3.	 Read-scale AGs

Traditional Availability Groups

Traditional AGs were introduced in the SQL Server 2012 Enterprise edition and require
an underlying cluster. In SQL Server 2016 and later, the AG feature in the Standard
edition is called basic AGs. The Enterprise edition not only enables secondary replicas
to be read-only and perform other tasks such as backups and Database Consistency
Checks (DBCCs) if desired but allows more than one database to be in the same AG. The
Standard edition is limited to a single database.

For Windows Server-based deployments, the underlying cluster is a Windows Server
Failover Cluster (WSFC) and for all Linux-based deployments, it is Pacemaker.

Note

Different Linux distributions may call the feature something different. For example,
Red Hat Enterprise Linux’s (RHEL) feature is known as the High Availability Add-On.

Traditional AGs require all replicas in a single AG's configuration to be part of the same
cluster, which means the same operating system version and type of cluster. Other
types of AGs described later in this chapter may allow the mixing of OSes and cluster
types.

To provide abstraction so that applications and end users do not need to know which
instance is the primary instance, there is a component called the availability group
listener, or just the listener. The listener can also be used to send traffic to secondary
replicas configured to allow reading.

In a WSFC, the listener is the combination of two resources: a network name and an IP
address. In Pacemaker, it is just an IP address resource. On the backend, if you are using
Active Directory Domain Services with a WSFC-based AG, a computer object will need
to be created for the listener as well as an entry in DNS. For Pacemaker-based AGs,
only a DNS entry is required for the listener. For example, if you have NodeA and NodeB
as the underlying servers and a WSFC with the name MyWSFC, the listener will have
a completely different name, such as AppLsnr. All application connections, whether
for reading or writing, would use AppLsnr, not the names of the nodes, instances (if
named), or the WSFC.

SQL Server availability feature overview | 85

AGs have no shared storage requirements but can be combined with FCIs (see the
next section for more information) to increase resiliency. Because synchronous and
asynchronous are set per replica, AGs allow you to have local availability and disaster
recovery in the same feature since asynchronous is much more tolerant of the distance
between data centers. Automatic failover can occur with synchronous data movement if
the replicas are in a synchronized state.

Figure 3.1: Always On Availability Group

For traditional AG deployments, the choice of OS will dictate the level of integration
with the underlying cluster. A Windows Server-based AG (or FCI) has tight integration
through a resource .dll, which makes SQL Server a cluster-aware application.
Although Pacemaker ships with Linux distributions, it is not developed by them but
can be customized. Microsoft provides an integration component (mssql-server-ha) for
Pacemaker known as a resource agent, which must be downloaded (mssql-server-ha)
and installed on the physical or virtual server. When creating an AG, you must select a
cluster type. For Pacemaker, it is EXTERNAL.

Note

Whether you use Linux or Windows Server, the OS version and/or distribution
must be the same for a Pacemaker cluster or WSFC. For example, you cannot mix
Ubuntu and Red Hat Enterprise Linux in the same AG.

86 | High Availability and Disaster Recovery

Most Windows Server-based WSFCs (and SQL Server deployments) use Active
Directory Domain Services (AD DS). Windows Server 2016 enables the creation of
a WSFC that does not use AD, called a Workgroup Cluster. You can also have servers
participating in different domains, known as a Multi-Domain Cluster. Endpoint security
uses certificates, not an AD DS account.

All of the servers, or nodes, of the cluster must be able to communicate with each
other and see the domain name system. This allows SQL Server to be able to create
AGs in non-domain-based environments. These are called domain-independent AGs.
An example is shown in Figure 3.2 where the nodes in Data Center 1 could be domain-
joined, while the ones in Data Center 2 are not. SQL Server calls this configuration a
domain-independent AG and requires the use of certificates for the endpoints.

Figure 3.2: Multi-Domain Cluster with an AG configured on top of it

Full documentation on how to deploy AGs with Windows Server can be found at
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/
windows/overview-of-always-on-availability-groups-sql-server?view=sql-server-2017.
For Linux, it can be found at https://docs.microsoft.com/en-us/sql/linux/sql-server-
linux-availability-group-ha?view=sql-server-2017.

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-availability-group-ha?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-availability-group-ha?view=sql-server-2017

SQL Server availability feature overview | 87

Distributed availability groups

In a typical configuration, where the underlying cluster is stretched across multiple
sites for disaster recovery, the entire core infrastructure must usually exist in both
places. This makes certain design elements, such as a witness for a WSFC, potentially
more challenging. An example of an AG stretched across two data centers is shown in
Figure 3.2.

Introduced in SQL Server 2016, distributed Availability Groups allow you to create an
AG that spans more than one underlying AG. Each underlying AG is in its own cluster.
That cluster could be on Linux, Windows Server, or even a read-scale Availability Group,
which is described in an upcoming section. Using a distributed AG is one of the only
ways to mix Windows Server and Linux, different OS versions such as Windows Server
2016 and Windows Server 2019, SQL Server versions, and AG types (Read-scale and
"normal") in the same configuration. An example of a distributed AG that spans both a
WSFC and Pacemaker is shown in Figure 3.3. For example, AG 1 could be SQL Server:

Figure 3.3: Distributed AG spanning two different clusters

88 | High Availability and Disaster Recovery

For a distributed AG, instead of using the server names when configuring, the listener
name (or IP address) is used. There is only one read/write copy of the data. In Figure
3.4, this is the database on the primary replica of AG 1. While the primary replica of AG 2
is technically a primary from an AG perspective, it is known as a forwarder. It is used to
synchronize the secondary replica(s) in that AG. The data synchronization flow can be
seen in Figure 3.4.

Note

A distributed AG is a SQL Server-only construct and does not appear in an
underlying cluster. To administer, you need to use the DMVs. There is very little in
SSMS as of version 18.

A single primary replica can feed two different AGs in a distributed AG, and a forwarder
can also be used as the primary for another distributed AG, as shown in Figure 3.4. This
configuration is good to scale out readable replicas. There is still only one read-write
copy, and that is at AG1.

Figure 3.4: AG1 feeding AG2, and AG2 feeding AG3 in two distributed AGs

Another use of a distributed AG is for upgrades and migrations. For example, in Figure
3.5, a distributed AG is set up between the SQL Server 2016 and 2019 instances. Those
instances are on different WSFCs with different OS versions. Once the cutover occurs,
the distributed AG can be unconfigured and the older configuration can be retired.

SQL Server availability feature overview | 89

Figure 3.5: Using a distributed AG to upgrade SQL Server and migrate to a different WSFC

Note

Distributed AGs do not work with versions of SQL Server older than 2016, so a
2012 or 2014 AG cannot participate in a distributed AG even for upgrades or
migrations.

Read-scale Availability Groups

A read-scale AG is a specific variant in the Enterprise edition. A read-scale AG's purpose
is to provide up to nine copies of data synchronized in near-real time if you need it for
reading or reporting purposes. This type of AG is different than configuring read-only
routing on a normal AG or using a distributed AG, both of which can be used to allow
other replicas to access readable data.

A read-scale AG requires a cluster type of NONE, which means that it does not use
a WSFC or Pacemaker, and is not considered an availability configuration because
an underlying cluster provides things such as health checks and the ability to have
automatic failover. Neither is possible with a cluster type of NONE. However, in certain
circumstances, a read-scale AG can provide disaster recovery. An example would
be if you deployed an FCI with Storage Spaces Direct, a traditional AG could not be
configured, so a read-scale one would work for D/R.

In a read-scale AG, the primary replica is the listener and it allows Linux- and Windows
Server-based SQL Server replicas to participate in the same AG. This is different
than a traditional AG, which requires all replicas to be on the same OS/distribution
or a distributed AG where Linux- and Windows Server-based AGs are in the same
distributed AG, but in separate AGs.

90 | High Availability and Disaster Recovery

Always On FCIs

An Always On FCI provides instance-level protection. Instance-level protection
means that anything inside the instance, such as logins, SQL Server Agent jobs, and
linked servers, exist after failover. FCIs require both an underlying cluster (WSFC or
Pacemaker) as well as shared storage. Shared storage can be a challenge for some
virtualized and public cloud-based implementations, and this is why AGs are often a
better choice for non-physical SQL Server availability.

FCIs are not a scale-out feature; only one node of a cluster owns all the resources at any
given time. For performance, the instance must be accounted for via scale-up methods.
Figure 3.6 shows a high-level view of an FCI. The solid line indicates that that node owns
the FCI and the connection to the storage, while the dashed line shows that the other
node is connected and could own the resource, but currently does not.

Figure 3.6: FCI example

When a failover occurs, the FCI stops on one node of a Pacemaker cluster or a WSFC
and then starts on another. SQL Server goes through full recovery as it would if you
started or rebooted a server. This means that there is no data loss in the sense that data
will be consistent to the point of failover: if a transaction is incomplete, it will be rolled
back and any data that needs to be rolled forward will be.

One major difference between a Pacemaker-based FCI and its WSFC counterpart is
that the installation process is completely different. With a WSFC, FCIs are part of
SQL Server setup, meaning they cannot be configured after SQL Server is installed.
On Linux, SQL Server is fully installed locally on each node before the FCI portion is
configured in Pacemaker.

Another difference between Linux-and Windows Server-based FCIs is that only one
installation of SQL Server can be configured on Linux. That means every installation
of SQL Server on Linux is a default instance; there is currently no concept of a named
instance on Linux. Therefore, not more than one FCI can be configured per Pacemaker
cluster. On a WSFC, up to 25 FCIs (resource dependent) are supported.

SQL Server availability feature overview | 91

Log shipping

Log shipping is one of the oldest features in SQL Server for availability and is often used
for disaster recovery, but also for upgrades and migrations. It is based on backup and
restore. Like an AG, it provides database-level protection and any object outside the
database must be accounted for separately. Log shipping uses SQL Server Agent jobs to
back up the transaction log on the source, copy it to its destination, and restore it on
the warm standby server. From the standpoint of RPO, you are only as good as the last
transaction log that you have access to.

Because the unit of transaction is the transaction log backup, log shipping accounts for
human error. If someone issues an UPDATE without a WHERE and that has not been applied
to the standby, you could switch to the standby. All transactions are sent to a secondary
replica in an AG immediately.

Log shipping can be combined with both AGs and FCIs, and allows Linux- and Windows
Server-based instances to participate in the same solution. This is not possible with
FCIs, and as described above, mixing SQL Server on different operating systems with
AGs can only be done with certain configurations.

Figure 3.7: Log shipping

92 | High Availability and Disaster Recovery

What About Database Mirroring and Replication?
Database Mirroring (DBM) was deprecated in SQL Server 2012. Its official replacement
is AGs and they were documented as such when SQL Server 2016 introduced basic
Availability Groups and the ability to use AGs with certificates. While DBM still ships
as part of SQL Server 2019 for Windows Server (not Linux), it should not be used for
new deployments. Microsoft often no longer removes deprecated features. Customers
upgrading from previous versions of SQL Server, where DBM was the main business
continuity strategy, should migrate to AGs.

Replication is not an official business continuity feature in the same way that AGs, FCIs,
and log shipping are. However, it can be used to enhance the availability of data and
many still use it in this capacity. Consider a scenario where executives need access
to data. They may not need the whole database, but a subset. Replication enables this
scenario – the schema can be different, have a different indexing strategy, and so on.
If you want to use AGs or log shipping for reporting, you get all of the same data at the
source and the same indexing strategy.

Availability improvements in SQL Server 2019
This section covers the new availability-related features and enhancements in SQL
Server 2019.

Accelerated database recovery

Accelerated Database Recovery (ADR) is a feature that was introduced in Azure
SQL Database but is now included in SQL Server 2019 for on-premises and IaaS
deployments. ADR speeds up recovery when a database is brought online after a failover
or an event where the database was not cleanly taken offline. Enabling ADR means
databases will be online and ready for use by end users and applications faster, reducing
downtime and unavailability.

Configuration-only replica

Although not new to SQL Server 2019, the concept of a configuration-only replica was
introduced post-SQL Server 2017 in Cumulative Update 1. A configuration-only replica is
required for a two-replica (primary and secondary) configuration when deploying AGs
on Linux. To support the Standard edition and not impact licensing, a configuration-
only replica can be configured on Express. The endpoint used must have a ROLE or
WITNESS, as shown in the example code that follows:

CREATE ENDPOINT AGEP

STATE = STARTED

AS TCP (

Availability improvements in SQL Server 2019 | 93

  LISTENER_PORT = 5022,

  LISTENER_IP = ALL)

FOR DATABASE_MIRRORING (

  AUTHENTICATION = CERTIFICATE JY_Cert,

  ROLE = WITNESS);

GO

Figure 3.8 shows a Linux-based AG that has two replicas and a configuration-only
replica.

Figure 3.8: Example of an AG on Linux with a configuration-only replica

94 | High Availability and Disaster Recovery

Certificate management in SQL Server Configuration Manager

Certificates are sometimes required for FCI or AG deployments. In this context,
certificates are those associated with the names for the FCI or an AG's listener.
Certificates for FCIs and listeners are network-level certificates. In the past, these
certificates would need to be applied manually on each node of the cluster.

With SQL Server 2019, you can now apply a certificate across the nodes of a WSFC
for FCIs and listeners using SQL Server Configuration Manager (SSCM). SSCM does
not exist for Linux, so this enhancement is only for Windows Server-based AG and
FCI configurations. Remember that a certificate's Subject Alternate Name (SAN) for
AG nodes must include the listener(s) as well as the node name. Figure 3.9 shows an
example of certificate management for an FCI:

Figure 3.9: Certificate management dialog for FCIs

Note

Certificates used by endpoints for domain-independent AGs, read scale groups,
and distributed AGs are different; they are generated from within SQL Server and
restored in SQL Server.

Availability improvements in SQL Server 2019 | 95

Clustered columnstore index online rebuild

Starting in SQL Server 2019, it is possible to build or rebuild a Clustered Columnstore
Index (CCI) as an online operation. To do so, you would need to add the (ONLINE = ON)
option to the CREATE or ALTER statement. Examples are shown below. The first example
is the creation of a new CCI:

CREATE CLUSTERED COLUMNSTORE INDEX MyCCI

  ON MyTable

  WITH (ONLINE = ON);

This example shows how to rebuild a CCI online:

ALTER CLUSTERED COLUMNSTORE INDEX MyCCI

  ON MyTable

  REBUILD WITH (ONLINE = ON);

Database scoped default setting for online and resumable DDL operations

Through SQL Server 2017, all online maintenance operations must be specified as part
of the Transact-SQL statement. The examples shown above use ONLINE = ON. In SQL
Server 2019, you have the option of changing the default behavior for each database to
ONLINE = ON so it does not need to be part of the Transact-SQL statement. The same is
true of the new resumable index operation, where RESUMABLE = ON can be set.

To change the default behavior for a database, you modify the database scoped
configuration. The two options are ELEVATE_ONLINE and ELEVATE_RESUMABLE. Example
code follows. The options are OFF (the default behavior), WHEN_SUPPORTED, and FAIL_
UNSUPPORTED:

ALTER DATABASE SCOPED CONFIGURATION

    SET ELEVATE_ONLINE = WHEN_SUPPORTED;

ALTER DATABASE SCOPED CONFIGURATION

    SET ELEVATE_RESUMABLE = WHEN_SUPPORTED;

Note

At the time of writing this chapter, this is a Transact SQL-only option and cannot be
configured using SSMS.

96 | High Availability and Disaster Recovery

Failover Cluster Instance Support for Machine Learning Services

Machine language functionality is now supported for installation as part of an FCI.
However, it is not cluster-aware like SQL Server itself, SQL Server Agent, or an AG. The
resource in the role, the SQL Server Launchpad, is just a generic service, meaning it has
no health detection. The role will only fail over to another if the FCI itself does so since
it is dependent upon the FCI resource itself. An example is shown in Figure 3.10:

Figure 3.10: FCI with the machine language resource

Increased number of synchronous replicas in the Enterprise edition

In the SQL Server 2019 Enterprise Edition, Microsoft increased the total number of
synchronous replicas that can be configured to five (one primary and four synchronous
secondary replicas), up from three in SQL Server 2016 and 2017 (one primary and up to
two secondary replicas) and two in SQL Server 2012 and 2014 (only one primary and one
secondary). Since synchronous data movement is required for automatic failover, this
also means that up to five replicas can be configured for automatic failover. The number
of replicas in SQL Server 2019 for basic AGs remains the same at a total of two replicas
(one primary and one secondary).

Availability improvements in SQL Server 2019 | 97

More synchronous replicas enable different scenarios. For example, you can have:

•	 The read/write primary replica.

•	 A secondary replica dedicated to availability.

•	 Up to three more secondary replicas dedicated to just near-real time read-only
access, spreading out load even further using the load balancing feature of read-
only routing.

The trade-off of configuring more synchronous replicas is that your network must be
robust and the IOPS must be optimized; otherwise, synchronization will lag behind.
If you currently struggle with synchronization, adding replicas will not improve the
situation.

Online builds or rebuilds for Clustered Columnstore Indexes

Columnstore indexes are an index type that improves query performance for workloads
that use large amounts of data. An example would be a data warehouse. Instead of being
stored in a traditional row-based format, columnstore indexes are stored in a column-
based one and compress the data. Building or rebuilding a columnstore index prior to
SQL Server 2019 was an offline operation, meaning no changes could occur while the
index was being created or recreated.

With the SQL Server 2019 Enterprise edition, columnstore index maintenance can be
done as an online operation. This means that any databases using columnstore indexes
are more available for use.

An example Transact-SQL statement to build a new columnstore index as an online
operation is shown here – the key is the (ONLINE = ON) portion:

CREATE CLUSTERED COLUMNSTORE INDEX MyCI

  ON MyTable

  WITH (ONLINE = ON);

An example Transact-SQL statement to rebuild an existing columnstore index to use
the new online functionality is shown here:

ALTER INDEX MyCI

  ON MyTable

  REBUILD WITH (ONLINE = ON);

Note

This enhancement also applies to Azure SQL Database.

98 | High Availability and Disaster Recovery

Read-only routing configuration in SQL Server Management Studio

The way to tell an AG that secondary replicas can be used for read access is to configure
read-only routing. In older versions of SQL Server Management Studio (SSMS), this
was not possible. Starting with SSMS 17.3, read-only routing can be configured in SSMS
via the New Availability Group Wizard as well as in the properties of the AG itself. An
example of using SSMS for read-only routing configuration is shown in Figure 3.11:

Note

If using SSMS, a listener must be configured before setting up read-only routing.

Figure 3.11: Read-only routing configuration in SSMS

Availability improvements in SQL Server 2019 | 99

Replication for Linux-based configurations

When SQL Server 2017 was released, one of the features missing for Linux was
replication. In SQL Server 2019, replication is now an included feature for Linux-based
SQL Server configurations. The following replication variants are supported:

•	 Snapshot replication

•	 Transactional replication

•	 Merge replication

•	 Peer-to-peer replication

•	 Replication with non-default ports

•	 Replication with Active Directory Domain Services authentication

•	 Immediate updates for transactional replication

At the time of writing this chapter, the following are not supported:

•	 Immediate update subscribers

•	 Oracle publishing

Unlike clustered configurations in SQL Server, replication does not care about the
underlying operating systems so publishers, distributors, and subscribers can be
running on your operating system of choice as long as the version restrictions are
maintained for what can constitute a publisher, distributor, or subscriber.

Replication requires SQL Server Agent to be enabled. To do this on Linux, first check /
var/opt/mssql/mssql.conf to see if Agent is enabled. If not, run the following commands.
Enabling Agent requires a restart of SQL Server, meaning brief downtime:

sudo /opt/mssql/bin/mssql-conf set sqlagent.enabled true

sudo systemctl restart mssql-server

If the distributor will be running on a Linux-based SQL Server instance, create a folder
for the snapshots used by SQL Server Agent. The mssql user must have access otherwise
replication will not work. An example is shown here:

sudo mkdir /var/opt/mssql/data/Snapshots/

sudo chown mssql /var/opt/mssql/data/Snapshots/

sudo chgrp mssql /var/opt/mssql/data/Snapshots/

100 | High Availability and Disaster Recovery

Secondary-to-primary read/write connection redirection

This new capability in SQL Server 2019 allows connections using a listener to ensure
write-based commands always reach the primary replica even if it is pointed at a
secondary replica. There are two aspects to consider in terms of the configuration:

•	 READ_WRITE_ROUTING_URL must be set, which is currently not exposed in SSMS at
the time of writing this chapter.

•	 ApplicationIntent must be ReadWrite, not ReadOnly.

•	 ALLOW CONNECTIONS must be set to ALL for a secondary role.

The following is a sample Transact-SQL to change an existing AG to support this new
functionality:

ALTER AVAILABILITY GROUP [2019AG]

MODIFY REPLICA ON N'AGN1'

WITH (PRIMARY_ROLE (ALLOW_CONNECTIONS = READ_WRITE));

GO

ALTER AVAILABILITY GROUP [2019AG]

MODIFY REPLICA ON N'AGN1'

WITH (PRIMARY_ROLE (READ_WRITE_ROUTING_URL = N'TCP://AGN1.CONTOSO.COM'));

GO

ALTER AVAILABILITY GROUP [2019AG]

MODIFY REPLICA ON N'AGN1'

WITH (SECONDARY_ROLE (ALLOW_CONNECTIONS = ALL));

GO

ALTER AVAILABILITY GROUP [2019AG]

MODIFY REPLICA ON N'AGN2'

WITH (PRIMARY_ROLE (ALLOW_CONNECTIONS = READ_WRITE));

GO

ALTER AVAILABILITY GROUP [2019AG]

MODIFY REPLICA ON N'AGN2'

Availability improvements in SQL Server 2019 | 101

WITH (PRIMARY_ROLE (READ_WRITE_ROUTING_URL = N'TCP://AGN2.CONTOSO.COM'));

GO

ALTER AVAILABILITY GROUP [2019AG]

MODIFY REPLICA ON N'AGN2'

WITH (SECONDARY_ROLE (ALLOW_CONNECTIONS = ALL));

GO

An example execution showing this new functionality working follows.
ApplicationIntent is set to ReadWrite, as shown in Figure 3.12, for a connection made to
AGN2. AGN2 is currently the secondary replica:

Figure 3.12: Setting ApplicationIntent in the SSMS connection properties

102 | High Availability and Disaster Recovery

After connecting to AGN2, note the output of the two queries in Figure 3.13. The first is
asking SQL Server what replica the connection is using and if it thinks it is the primary
replica, which in this case is AGN1. However, look at the highlighted box at the bottom –
the connection is actually to AGN2:

Figure 3.13: Showing the new redirection capability of an AG

Windows Server 2019 availability enhancements
Windows Server 2019 also has a few new features or changes to existing ones that
enhance the availability of Windows Server 2019-based SQL Server deployments even
if they are not SQL Server 2019. Some new features, such as cluster sets, introduced in
Windows Server 2019 currently do not apply to any version of SQL Server but may in
the future.

Note

The versions of SQL Server supported on Windows Server 2019 are SQL Server
2016, 2017, and 2019.

Windows Server 2019 availability enhancements | 103

Changing domains for a Windows Server Failover Cluster

Changing the AD DS status of a WSFC for all versions prior to Windows Server 2019
involved the complete destruction of the WSFC and anything running in it. That was
very disruptive. Windows Server 2019 supports the ability to change the domain
membership of a WSFC and its resources.

Cluster Shared Volumes support for Microsoft Distributed Transaction

Coordinator

Cluster Shared Volumes (CSV) have been supported as storage for FCIs since SQL
Server 2014. However, if you required a clustered Microsoft Distributed Transaction
Coordinator (MS DTC, MSDTC, or just DTC), that needed to be placed on a disk with a
drive letter. Windows Server 2019 enables DTC to be configured using CSV.

Figure 3.14 shows a clustered DTC. Note that the Value of the object matches the ID of
the CSV:

Figure 3.14: PowerShell output showing DTC created on a CSV

File share witness without a domain

Domain-independent AGs can utilize a WSFC that has nodes that are joined to Active
Directory Domain Services. An important aspect of all WSFCs is configuring the right
witness resource for the quorum. In Windows Server 2016, the only options that work
for this configuration are cloud or disk witness. Cloud witness is Azure-based, which is
not an option for some, especially those in a DMZ. Disk witness defeats the purpose of
having a non-shared disk configuration and complicates certain types of deployments.
A file share witness is the natural choice for a local WSFC where there is no shared
storage, but a file share requires domain connectivity.

104 | High Availability and Disaster Recovery

Windows Server 2019 allows the creation of a file share witness without a domain. All
ACLs are set locally on the file share, and when the witness is created, the credentials
are provided. An example of this is shown in Figure 3.15. A file share can even be
something as simple as a USB stick plugged into a router:

Figure 3.15: File share witness creation in PowerShell

Improved Windows Server Failover Cluster security

Pre-Windows Server 2019, WSFCs used NTLM for a lot of things, such as intra-node
communication. In Windows Server 2019, Microsoft redesigned WSFC security and
there are no more NTLM dependencies. Certificate-based SMB authentication is used
between the WSFC nodes. Some applications may require NTLM, but the WSFC itself no
longer requires it and, if desired, could be disabled on the server.

Storage Replica in the Standard edition

Storage Replica is a feature in Windows Server that enables you to have FCIs that span
two locations for disaster recovery. This is achieved through disk-based replication.
Storage Replica is not for AG configurations where the replicas are kept in sync via SQL
Server.

Windows Server 2019 availability enhancements | 105

Storage Replica handles the replication of disk volumes configured for use in a WSFC.
The disk-based replication can be synchronous or asynchronous. Windows Server 2016
was the first version of Windows Server to feature Storage Replica, but it was only in
the Datacenter edition. Windows Server 2019 enables Storage Replica in the Standard
edition. There are two main limitations of the feature in the Standard edition:

•	 It only replicates a single volume.

•	 The volume size can be a maximum of 2 TB.

This means an FCI can have only a single disk configured with it.

Figures 3.16 and 3.17 show the output of a PowerShell script that shows the version and
edition of Windows Server along with all of the features that have the word "storage" in
them:

Figure 3.16: Windows Server 2016 features with storage in the name

Figure 3.17: Windows Server 2019 features with storage in the name

Note

To use Storage Replica for an FCI, create all of the storage and the replication first,
then select the disks during the FCI creation.

106 | High Availability and Disaster Recovery

Storage Spaces Direct two-node configuration

In Windows Server 2016, Storage Spaces Direct (S2D) worked in a two-node
configuration but was optimal with three or more. In Windows Server 2019, the
two-node configuration works well and is robust. FCIs can be configured on S2D. S2D
now has two different nested resiliency options in Windows Server 2019 to survive drive
and node failure:

•	 Nested two-way mirror

•	 Nested mirror-accelerated parity

Figure 3.18 shows how a nested two-way mirror works. Windows Server contains four
copies of the data across the two servers. There is only one read/write copy of the data,
similar to a distributed AG:

Figure 3.18: S2D nested two-way mirror

Windows Server 2019 availability enhancements | 107

Nested mirror-accelerated parity combines the two-way mirror with nested parity. So,
you get local parity for resiliency and mirroring between the servers. See Figure 3.19 for
what this looks like:

Figure 3.19: Nested mirror-accelerated parity

The trade-off of these architectures is capacity. The nested-two way mirror maintains
four copies, so if your data size is 500 GB, you need 2 TB of physical storage. That
means only 25% of your space is usable. Nested mirror-accelerated parity is better, but
it depends on the number of capacity drives in each server as well as the mix of mirror
and parity for the volume. Typically, you will see between 35 and 40% usable space.

For more information, see https://docs.microsoft.com/en-us/windows-server/
storage/storage-spaces/nested-resiliency.

Windows Server Failover Cluster improvements in Azure

Currently, all clustered configurations of SQL Server in Azure require the use of an
internal load balancer to handle the floating IP addresses for the listener, an FCI, or a
WSFC. Windows Server 2019 is Azure-aware. The WSFC creation process will detect
whether you are running on Azure and, if so, create a distributed network name.
Normally, a network name requires its own IP address. A distributed network name uses
the IP address of the underlying node.

https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/nested-resiliency
https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/nested-resiliency

108 | High Availability and Disaster Recovery

This simplifies the configuration of an IaaS-based WSFC. The distributed network name
does not work with SQL Server resources, so an ILB is still required for an AG's listener
or the FCI's IP address(es). An example is shown in Figure 3.20:

Figure 3.20: Distributed network name for a WSFC

Another improvement in Windows Server 2019, when deployed in Azure, is that
Windows Server now detects if there is maintenance occurring on the host for the IaaS
VM and log events. This helps when troubleshooting. This is tracked in the Failover
Clustering Operational log. The new event IDs are:

•	 1136 – Node maintenance is imminent and about to occur.

•	 1139 – Node maintenance has been detected.

•	 1140 – Node maintenance has been rescheduled.

Windows Server 2019 availability enhancements | 109

There is a new property in the WSFC called DetectManagedEvents. There are five values
this can have:

•	 0 – Do not log Azure scheduled events (default for on-premises).

•	 1 – Log Azure scheduled events (default for Azure).

•	 2 – Avoid placement (do not move roles to this node).

•	 3 – Pause and drain roles when a scheduled event is detected.

•	 4 – Pause, drain, and fail back roles when a scheduled event is detected.

Another new WSFC property is DetectManagedEventsThreshold. The default value is 60
seconds and is the amount of time before the event happens to move things off of the
WSFC node.

One of the unique capabilities of SQL Server is the ability to leverage the power of
hybrid cloud infrastructure. There are several ways to leverage Azure to improve
the high availability and disaster recover of an on-premises SQL Server deployment.
Azure Storage is a core service offered by Microsoft Azure is Azure Storage. It offers
enterprise-ready, highly scalable, flexible storage solutions at competitive prices. SQL
Server 2019 and Azure Storage work together to benefit users. We can leverage Azure
Blob storage to develop and deploy hybrid solutions, such as backing up on-premises
SQL Server databases to the cloud (also called Backup to URL) and building SQL Server
data files in Azure Storage to use file-snapshot backups.

Hybrid Features – SQL
Server and Microsoft

Azure

4

112 | Hybrid Features – SQL Server and Microsoft Azure

It is also possible to enhance your disaster recovery strategy by leveraging Azure so
that it ultimately becomes your secondary data center. There are many ways to benefit
from this. A common approach is that you can extend your on-premises availability
group by provisioning a secondary asynchronous replica to an Azure virtual machine
with SQL Server installed. Another hybrid scenario used by enterprise customers is the
configuration of transactional replication between on-premises SQL Server and Azure
SQL Database to help with migration to Azure with minimal downtime.

Backup to URL
A great strategy for on-premises SQL Server databases is to back up to Azure Storage.
There are many benefits to leveraging the massive scale of the cloud to hold backups.

Benefits

•	 You can think of using Azure Storage as a cost-effective off-site backup location
that is an extension of your own local data center and is highly performant and
highly available. With the help of Microsoft, you can quite easily scale your storage
account to 5 PB.

•	 Geo-Redundant Storage (GRS) is designed to provide at least
99.99999999999999% durability over a given year by replicating your data to a
secondary region that is hundreds of miles away from your primary region, that is,
your paired region.

•	 There are no Storage Array Networks (SANs) or file shares for you to administer
and support. Azure services will take care of this, thus reducing hardware
administration costs.

•	 Using the latest version of SQL Server Management Studio (SSMS) makes setup
quick and easy with native support for Backup to URL. Once you have understood
the high-level requirements, using T-SQL is also a valid and simple alternative
option.

Requirements

To successfully implement the backup to URL feature, you will need to configure and
set up the following components:

•	 A private container within a storage account

•	 Shared Access Signature (SAS)

•	 A SQL Server credential that has a secret mapped to the SAS

The storage account | 113

The storage account
Typically, you would set up your storage account as shown in Figure 4.1:

Figure 4.1: Setting up the storage account

You should create containers to organize the contents of your storage account. There
are two types of blob storage that you could use, these being page and block blobs
(technically, there is another blob type, called append blob, which will not be covered in
this chapter). The type of blob you use is dictated by the security route that you take. If
you decide to use a storage key within the SQL Server credential, then page blobs will
be used; if you configure an SAS for the credential, then block blobs will be used. The
best practice is to use block blobs for three main reasons. Firstly, using an SAS is a more
secure way than using a storage key to authorize access to blob storage. It provides a
more granular level of access without the need to expose the main storage account keys
(primary or secondary). With block blobs as the target, you can leverage multiple blobs
(striping) to improve the performance of backups and restores for larger databases.
Finally, block blobs are the more cost-effective option when compared to page blobs.

114 | Hybrid Features – SQL Server and Microsoft Azure

Setup

1.	 Connect to the storage account via Azure Storage Explorer (https://azure.
microsoft.com/en-gb/features/storage-explorer/) and get the SAS for the
sqlbackups container, which is set to private, as shown in Figure 4.2:

Figure 4.2: Blob Containers

2.	 Go to Actions and select Get Shared Access Signature, as shown in Figure 4.3:

Figure 4.3: The actions dialogue box

https://azure.microsoft.com/en-gb/features/storage-explorer/
https://azure.microsoft.com/en-gb/features/storage-explorer/

The storage account | 115

3.	 Once you have completed the expiry times and permissions, you will need to click
Create and copy the query string, as shown in Figure 4.4:

Figure 4.4: Setting the Share Access Signature

Let's break down an example SAS:

Figure 4.5: Example SAS

•	 st/se defines the start time and expiry times defined for the SAS for the resource.

•	 sp shows the permissions defined—for this example, these are read, write, and
delete (RWD).

•	 sv is the storage service version used.

•	 sr is the resource used for this example, which is a container (C).

•	 sig is the actual signature created using the SHA256 algorithm.

116 | Hybrid Features – SQL Server and Microsoft Azure

Now we have a grasp of the different components of the query string above. Ultimately,
this will become the secret for the SQL Server credential in the Backup to URL process
(obfuscated for security purposes):

CREATE CREDENTIAL [https://aksproddiag844.blob.core.windows.net/sqlbackups]

WITH IDENTITY = 'SHARED ACCESS SIGNATURE',

SECRET = 'st=2020-04-05T07%ani&se=2019-04-14T07%3A5aa6ryaesSQL&sv=2018-03-
28&sr=c&sig=1LSEQkaJSCZ%anOayausca!;

GO

Once the credential has been created, it will allow the backup code to successfully
execute:

BACKUP DATABASE

 [CodeDB] TO URL = N'https://aksproddiag844.blob.core.windows.net/sqlbackups/
CodeDB_Apr_5_2019_9_19AM.bak

 ' WITH COMPRESSION, CHECKSUM, FORMAT, STATS = 10;

10 percent processed.

20 percent processed.

30 percent processed.

40 percent processed.

50 percent processed.

60 percent processed.

70 percent processed.

80 percent processed.

90 percent processed.

100 percent processed.

Processed 191264 pages for database 'CodeDB', file 'CodeDB_Data' on file 1.

Processed 1 pages for database 'CodeDB', file 'CodeDB_Log' on file 1.

BACKUP DATABASE successfully processed 191265 pages in 30.078 seconds
(49.679 MB/sec).

The storage account | 117

If you log back into the storage account via the Storage Explorer tool, you see the
backup file:

Figure 4.6: Backup file

Note

Another benefit of this feature when utilizing block blobs is the fact that you can
issue WITH COMPRESSION, MAXTRANSIZE, and BLOCKSIZE arguments for the backup
commands to further enhance the performance of the backup and save space for
those larger files.

Restoring from this backup is no different to what you would do with on-premises
bound backup files. Simply state the FROM URL argument instead of FROM DISK:

USE [master]

RESTORE DATABASE [CodeDB2] FROM

 URL = N'https://aksproddiag844.blob.core.windows.net/sqlbackups/CodeDB_
Apr_5_2019_9_19AM.bak' WITH FILE = 1,

 MOVE N'CodeDB_Data' TO N'D:\SQL\Codedb2.mdf',

 MOVE N'CodeDB_Log' TO N'D:\SQL\Codedb2_Log.ldf',

 NOUNLOAD, STATS = 5

118 | Hybrid Features – SQL Server and Microsoft Azure

SQL Server data files in Azure
This feature enables users to create SQL Server 2019 databases on premises, but the
underlying data files (MDF, NDF, and LDF) are bound to Azure Blob storage rather than
local storage:

Note

This hybrid technique is only recommended and supported for user databases and
not system databases.

Figure 4.7: Saving database across platforms

The separation of the compute layer (sqlservr.exe being on premises) and storage
layer (Azure Storage) makes the recovery benefits seem more obvious. For example, if
you lose the on-premises SQL Server instance, you can set up a new one without any
manual data movement. Quite simply, all that is needed is to re-attach the datafiles.
Once successfully set up, you can then leverage file-snapshot backups for database files
in Azure (see the next section). This feature provides near-instantaneous backups and
quick restores, making it a compelling solution for bigger databases.

SQL Server data files in Azure | 119

When using this separation technique, there is a small cost assigned to it for the actual
storage and transactions that occur per database file in the form of blob lease renewals,
which occur every 45-60 seconds.

Note

Please visit https://azure.microsoft.com/pricing/ to work out your monthly costs.

Setup and concepts

For set up, the concepts are very similar to those for Backup to URL. Best practices
dictate that the container in Azure Storage should be private. This is where the data
files will be located. An SAS will then need to be created against this container, where it
will then become the secret within the SQL Server credential store.

This feature utilizes page blobs rather than block blobs, which is the more efficient blob
type for random read-write patterns:

Generate the SAS via Storage Explorer. In Figure 4.8 we have a new private container
called sqldatafiles:

Figure 4.8: Storage explorer

https://azure.microsoft.com/pricing/

120 | Hybrid Features – SQL Server and Microsoft Azure

4.	 Click Actions to build the secret:

Figure 4.9: Shared Access Signature dialogue box

5.	 Use the query string generated as the secret for a SQL Server credential, which is
shown here and obfuscated for this chapter:

CREATE CREDENTIAL [https://aksproddiag844.blob.core.windows.net/
sqldatafiles]
WITH IDENTITY='SHARED ACCESS SIGNATURE',
SECRET = 'st=2020-04-05T09%d&se=2019-04-arj&!un=rwdl&sue=2018-03-28ani&Asi
g=Ra0yanab1VJ2y5mTAnotherA000Rg3TeamrZfyhXs%Ar7unDddaa4ryaxxA'

SQL Server data files in Azure | 121

6.	 Create the SQL Server database bound to Azure Storage:

CREATE DATABASE IOT_DB
ON
(NAME = IOT_DB,
 FILENAME = 'https://aksproddiag844.blob.core.windows.net/sqldatafiles/
IOT_DB.mdf')
 LOG ON
(NAME = IOT_DB_log,
 FILENAME = 'https://aksproddiag844.blob.core.windows.net/sqldatafiles/
IOT_DBLog.ldf')

7.	 Confirm that the database files are now in Azure Storage:

Figure 4.10: A list of database files

8.	 Use an SSMS query to check the files are bound to Azure Storage:

SELECT * FROM sys.sysfiles

Figure 4.11: System files

Considerations

There are a few important points to consider when discussing the merits of SQL Server
data files. The storage account used to hold the data files should not use any form of
storage-level geo-replication. More specifically, this means GRS accounts should not be
used. This is because this option replicates data asynchronously across two geographic
regions, and if failover occurs where the secondary location now serves as the primary
one, then database corruption is possible because of the way asynchronous replication
works.

122 | Hybrid Features – SQL Server and Microsoft Azure

As mentioned when we discussed Backup to URL, leases are used against Blob storage
objects, with renewals occurring every 45-60 seconds. The impact of this is different for
this feature because if SQL Server crashes and another instance is then configured to
use the same blobs, the new instance could potentially have to wait up until 60 seconds
for the lease to expire. You could overcome this by manually breaking the lease if you
cannot wait for 60 seconds.

To break the lease, you would right-click on the object(s) within your container and
click Break Lease:

Figure 4.12: Breaking the lease

In this case, the lease would be broken against the transaction log. Alternatively, you
could wait for it to expire for it to become available.

Note

In terms of SQL Server features, FILESTREAM and In-Memory online transaction
processing (OLTP) are not supported. These will need local storage. AGs are
supported as long as you do not add new database files to the primary database.

File-snapshot backups | 123

File-snapshot backups
One of the benefits of configuring SQL Server data files in Azure is the ability to
leverage file-snapshot backups. This is summarized in Figure 4.13, where 1 shows the
successful setup of the data files in Azure (a prerequisite covered earlier on) and 2 is the
high-level design of how the data files and snapshot files interact with each other after
a full backup takes place:

Figure 4.13: Snapshot backups

The full database backup using snapshot technology creates a snapshot of each data
and log file that is part of the database and establishes the transaction log backup
chain for point-in-time recovery. When consequent transaction log backups are taken,
transaction log file-snapshot backups are generated, which contain file snapshots of
all database files, too. These can then be used to perform a database restore or a log
restore to a point in time. This approach means that you do not need additional full or
differential backups after the initial first full backup. This simplifies your backup restore
commands.

Setup

All the same components are needed as for previous features. The SQL Server
credential with the relevant secret (based on the SAS) must be in place before doing
this. For this example, we will be using the same private container as in the previous
section. As you can see from the backup code, the key argument is WITH FILE_SNAPSHOT:

USE master;

GO

ALTER DATABASE [IOT_DB] SET RECOVERY FULL;

124 | Hybrid Features – SQL Server and Microsoft Azure

GO

BACKUP DATABASE [IOT_DB]

TO URL = 'https://aksproddiag844.blob.core.windows.net/sqldatafiles/IOTDB_
FULL_SNAPSHOT.bak'

WITH FILE_SNAPSHOT;

GO

DECLARE @Log_Filename AS VARCHAR (300);

SET @Log_Filename = 'https://aksproddiag844.blob.core.windows.net/
sqldatafiles/IOTDB_Log_'+

REPLACE (REPLACE (REPLACE (CONVERT (VARCHAR (40), GETDATE (), 120),
'-','_'),':', '_'),' ', '_') + '.trn';

BACKUP LOG IOT_DB

 TO URL = @Log_Filename WITH FILE_SNAPSHOT;

GO

Figure 4.14: New Entry added

To view the snapshot files, use this:

select * from sys.fn_db_backup_file_snapshots (null) ;

GO

Figure 4.15: Snapshot files listed

Extending on-premises Availability Groups to Azure | 125

The restore speed is fast because the restore sequence is different to that of a
traditional streaming backup setup, where you would need a full backup chain
comprising a full backup (maybe a differential, too) along with the relevant log backups.
With file-snapshot backups, looking at Figure 4.16 where an issue occurred at 101.00
(red box), we would only need the last two log backups (red circles). This is because
they also include a snapshot of all the data files (as mentioned earlier on) and the log file
itself:

Figure 4.16: Backing up to Azure with file snapshots

Extending on-premises Availability Groups to Azure
With SQL Server 2019, you can extend your on-premises AG by building a secondary
replica in a Microsoft Azure data center, thus producing a cost-effective hybrid disaster
recovery solution. The replica(s) that you chose to build can be within a specific
geographic region or across multiple regions that use multiple virtual networks. Not
only is this approach a valid disaster recovery plan, but you could also leverage the
replicas to offload your backup tasks and reporting requirements. Either way, you can
be assured that your secondary data center is scalable, trusted, and extremely reliable.

One very important prerequisite for this hybrid technique is the need for a site-to-site
VPN connection, which is required to connect your on-premises network to your Azure
infrastructure.

Note

For more details on setup, please see the following documentation: https://docs.
microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-classic-
portal.

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-classic-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-classic-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-classic-portal

126 | Hybrid Features – SQL Server and Microsoft Azure

Via SSMS, you should leverage the Add Azure Replica wizard to guide you through the
process where, ultimately, you are extending the AG to include a replica based in Azure
(a virtual machine).

Once the AG has been created, you will then need to set up an internal listener. There
are many steps to this process, such as creating an endpoint on each virtual machine in
Azure that hosts a replica and creating client access point cluster resources.

Note

A full set of guidelines and scripts can be found at: https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-
ps-sql-int-listener#create-load-balanced-vm-endpoints-with-direct-server-return.

Replication to Azure SQL Database
One of Azure's most successful technologies within the database ecosystem is Azure
SQL Database. One of the main advantages of this technology is that it completely
removes the physical administration that you are probably used to with on-premises
SQL Server. We no longer need to manage the hardware, storage, backups, operating
system, and the database software itself. Even tasks such as consistency checks (DBCC
CHECKDB) are Microsoft's responsibility. This frees you up for other important tasks,
such as query optimization and indexing strategies, where you can really focus on
making your application faster. The other key driving factor for the move to Azure SQL
Database is the built-in, fault-tolerant, highly available infrastructure that equates to a
99.99% uptime SLA guarantee.

You shouldn't be surprised to hear that Microsoft has a cloud-first strategy. With the
fact that Azure SQL Database shares the same codebase as on-premises SQL Server
Database Engine, all the newest features and capabilities are released to Azure first.
This means you as the customer will gain from this by knowing that your database
software is always patched and updated to the latest version available. Therefore, many
customers choose this technology as their enterprise standard. When implementing
transactional replication from on-premises SQL Server to Azure SQL Database, you will
be able to migrate your data with minimal downtime.

Note

This section illustrates one-way transactional replication. For bidirectional
replication, SQL Data Sync is required. This is out of scope for this chapter.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-ps-sql-int-listener#create-load-balanced-vm-endpoints-with-direct-server-return
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-ps-sql-int-listener#create-load-balanced-vm-endpoints-with-direct-server-return
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-ps-sql-int-listener#create-load-balanced-vm-endpoints-with-direct-server-return

Transactional replication | 127

Classic approach

The most common method to migrate to Azure SQL Database is via the Data Migration
Assistant (DMA) tool. As shown in figure 14.17, this involves many steps, from an actual
assessment to any relevant changes and fixes, to the actual migration of data and the
schema itself:

Figure 4.17: Migrating to Azure SQL Database via DMA

The disadvantage of this technique is that it leads to more downtime. So, if you cannot
afford this downtime for production mission-critical databases, then transaction
replication to Azure SQL Database should be seriously considered.

Transactional replication
Once you have completed setup and the final data changes have been applied to
the subscriber (Azure SQL Database), all that is needed is application configuration
redirection from your on-premises database to Azure. Please note that Azure SQL
Database must be a push subscriber of a SQL Server publisher. Pull subscribers are not
supported.

128 | Hybrid Features – SQL Server and Microsoft Azure

You could also use this technique to move a subset of tables to Azure, which would
become a reporting database. Once set up, your users could then use tools such as
SQL Server Reporting Services (SSRS) and Power BI to query the data. This is a great
technique because not only are you splitting the OLTP workloads and read-based
workloads from each other, but this secondary reporting database is benefiting from
being in Azure. As such, all your high-availability and disaster recovery needs are being
met with 99.99% SLA uptime:

Figure 4.18: Transactional replication in Azure

Transactional replication | 129

Prerequisites

•	 The publisher and distributor must run the following SQL Server versions:

SQL Server 2019 (15.x)

SQL Server 2017 (14.x)

SQL Server 2016 (13.x)

SQL Server 2014 (12.x) SP1 CU3

SQL Server 2014 (12.x) RTM CU10

SQL Server 2012 (11.x) SP2 CU8 or SP3

•	 Install the latest version of SSMS (18.xx).

•	 Access to an Azure subscription.

•	 Access to an Azure SQL database (any region is allowed).

•	 Tables required for replication must have a primary key.

Setup

1.	 Under the replication node within SSMS, click New Publication:

Figure 4.19: Setting up a new publication within SSMS

130 | Hybrid Features – SQL Server and Microsoft Azure

2.	 You will then be presented with the wizard:

Figure 4.20: The New Publication dialog box

Transactional replication | 131

3.	 Configure the distribution settings for your environment:

Figure 4.21: Distribution settings dialog box

132 | Hybrid Features – SQL Server and Microsoft Azure

4.	 State a UNC path where snapshots can be made accessible:

Figure 4.22: Snapshot dialog box

Transactional replication | 133

5.	 The on-premises SQL Server database will become the publisher:

Figure 4.23: Choosing the publication in the New Publication Wizard

134 | Hybrid Features – SQL Server and Microsoft Azure

6.	 Only transactional replication is supported hence selected for this demo:

Figure 4.24: Publication type dialog box

Transactional replication | 135

7.	 Add all your tables or just select the tables you require:

Figure 4.25: Choosing tables in the New Publication Wizard

8.	 Set up the Snapshot Agent as required:

Figure 4.26: Setting up the Snapshot Agent

136 | Hybrid Features – SQL Server and Microsoft Azure

9.	 From a security perspective, for production environments, dedicated accounts
should be used:

Figure 4.27: Setting up agent security

10.	 Complete the publication setup:

Figure 4.28: The publication has been created

Transactional replication | 137

11.	 Next, go to the subscription setup from the replication node:

Figure 4.29: Subscription set up menu from the replication node

12.	 To complete the publication process, you will need to select the correct publisher.
For this example, the publisher is called to the cloud:

Figure 4.30: Choosing the publication to be linked to the publisher

138 | Hybrid Features – SQL Server and Microsoft Azure

13.	 The connection to the subscriber is required, this being Azure SQL Database.
Again, dedicated accounts should be used:

Figure 4.31: Connecting to the server

14.	 Once connected, chose the correct database to become the subscriber:

Figure 4.32: Choosing the database in the New Subscription Wizard

Transactional replication | 139

15.	 Next, chose when to initialize the subscription. Immediately is selected in the
following screenshot:

Figure 4.33: Setting up the initialization in the subscription wizard

16.	 The subscription has been created:

Figure 4.34: The subscriptions have been successfully created

140 | Hybrid Features – SQL Server and Microsoft Azure

Once complete, you will see, via replication monitor, the objects being created in
Azure with the relevant transactions being sent across that hold the data:

Figure 4.35: The actions displayed by the replication monitor

The replication monitor will display metrics such as performance, latency, and last
synchronization:

Figure 4.36: The replication monitor dialog

Transactional replication | 141

17.	 Connecting to Azure SQL Database, you will see that the schema and data now
exist:

Figure 4.37: The newly created schema

If you decide to take this approach for your reporting strategy, then everything is
now complete. However, as mentioned earlier, if this was done to migrate data, once
you see that no more transactions need to be replicated, all that is now required is an
application configuration change to point to this new cloud location.

The geographical locations of your Azure SQL Database and on-premises SQL Server
instances dictates your latency figures. For this example, my data, based in the UK, is
being replicated to West Europe with a total latency of 6 seconds, which is acceptable
for my demo environment:

Figure 4.38: Using tokens to measure total latency

For those new to Linux, there is a rich and deep history of the platform, just as there is
one for Windows. At one time, most database administrators (DBAs) avoided running
databases on Linux due to the age of the operating system (OS) compared to more
mature distributions of Unix. Linux was only introduced in 1991 by Linux Torvalds, and
he was actively involved in much of its development after failed attempts with other
distributions (including flavors of open-source Unix) such as Hurd.

As with other open-source Unix distributions, Linux development is done on the
GNU or Intel C Compiler. Linus hoped to limit any commercial activity, but in the end,
Linux has become the most widely used OS distribution used on enterprise servers.
Numerous Linux distributions exist, including Debian, Ubuntu, CentOS, RedHat, and
Fedora. Microsoft recently announced there are now more virtual machines (VMs)
running Linux than Windows in the Azure cloud.

SQL Server 2019 on
Linux

5

144 | SQL Server 2019 on Linux

Recognizing the power of this shift, Microsoft has embraced the same enterprise OS
for their enterprise database platform. This was accomplished with, amazingly, little
change in the underlying SQL Server code. Microsoft first introduced Linux support
with SQL Server 2017 and continued with the 2019 release of SQL Server 2019. There
are incredible new features that offer data virtualization like PolyBase, allowing you to
query any data source, including Hadoop clusters, NoSQL, Oracle and Teradata. The
data scientist, for the first time ever, has access to Machine Learning Services as part
of SQL Server 2019. Linux support has increased from a simple installation to advanced
configurations, containers, and advanced multi-distribution support and, let's be
honest, you're reading this chapter because you want to find out more about what's
offered for Linux regarding SQL Server 2019.

2019 platform support
With SQL Server 2019, support is offered for a list of robust and well-known Linux
distributions:

•	 Red Hat Enterprise Linux (versions 7.3-7.6)

•	 SUSE Enterprise Linux Server v12 SP2

•	 Ubuntu 16.04 Long-Term Support (LTS)

These distributions are supported on drive formats XFS or EXT4 and can be used in
conjunction with Docker 1.8 on Windows, Mac, or Linux with your favorite platform of
Linux container.

There is a wide array of Linux distributions available for installation, and you might be
tempted to run SQL Server 2019 on a distribution that's not listed in the certification
matrix. Outside of testing an installation, it's best to avoid non-certified Linux
distributions for any production use of SQL Server 2019 in your environment. The
certification matrix isn't a statement of the stability of any one Linux distribution
platform over another, but you can guarantee the ones listed have been tested
thoroughly by the SQL Server team to meet the demands of your enterprise database
environment.

Why move databases to SQL Server on Linux? | 145

Many Linux distributions are descendants of a common code base and use similar
installations and configurations. Understanding distribution similarities is important,
and an example of this is the Linux Red Hat installation for SQL Server 2019. Very
similar database software installation steps can be used on CentOS or Fedora, but this
doesn't change the fact that of the three distributions listed, only Linux Red Hat is
supported by Microsoft.

This results in the need for best practices in order for you to become comfortable
with the supported Linux installations and to create policies to require the supported
distributions for use with SQL Server 2019 to ensure you have support, along with
certified updates that are required for any enterprise database environment.

Why move databases to SQL Server on Linux?
Our world is getting smaller, and all the while, technology is expanding to do more for
more people. As with other data platforms, SQL Server has continued on its path to lead
in Linux as it has in Windows for decades.

As agile development practices and DevOps become the norm, we are expected to
move faster and with fewer environment silos. As teams begin to form across multiple
technical areas, often including business stakeholders, SQL Server 2019 can also
broaden to support all these areas.

The skills required to maintain a Windows server are very different than those required
to support Linux. Although Linux is a "flavor" of Unix distribution, other direct Unix
distributions, such as HP-UX and AIX, have mostly been abandoned for a unified Linux
offering. Linux has become the preferred OS for this revolution.

146 | SQL Server 2019 on Linux

Windows desktop installations still run the world, but research data has shown that
Linux is the OS for enterprise endeavors. TOP 500 (https://top500.org) is a website that
provides statistical information related to enterprise and supercomputers, including
compute vendors, CPUs, and OSes. The data is based on the top 500 in any category
and, as demonstrated by Figure 5.1, only Linux versions are in their top 500 of general-
purpose systems used for high-end applications:

Figure 5.1: Linux rules the enterprise web server world. Source: https://top500.org

Armed with this type of valuable information, it is apparent why Microsoft has
embraced Linux and chosen to make it part of the Azure cloud.

Installation and configuration

There are different installation utilities depending on the Linux distribution that you
choose. The processes of installing SQL Server 2019 on the various distributions are
very similar, no matter what distribution you are working on:

1.	 Download the package to the repository.

2.	 Install the package.

3.	 Configure the installation.

https://top500.org

Why move databases to SQL Server on Linux? | 147

Using RedHat as an example (the commands may be different for other distributions),
the first step is to update the repository with the SQL Server 2019 installation, which is
currently in preview.

To find the correct installation in the repository, you can use a list command and grep
(find) for the string you're searching, which in this case is mssql:

yum list installed

The distribution of Microsoft product containers is best retrieved from the official
Microsoft Container Registry. This repository has a considerable variety of images
beyond Microsoft, including other operating systems and applications. A curl command
is used to access the repository, and the -o tells the transfer utility what file to transfer
from the certified Microsoft repository, mcr.microsoft/mssql/server:vNext-CTP2.0.

To transfer the SQL Server 2019 installation from inside a Red Hat server, run the
following command:

$ sudo curl -o <repository file> <repository location>

Or as an example, as follows:

sudo curl -o /etc/yum.repos.d/mssql-server.repo https://packages.microsoft.
com/config/rhel/7/mssql-server-preview.repo

Now that the installation has been added to the local repository, the next step is to
install SQL Server using a yum command:

sudo yum install -y mssql-server

We must now configure and set up the password for the administrator:

sudo /opt/mssql/bin/mssql-conf setup

http://mcr.microsoft/mssql/server:vNext-CTP2.0

148 | SQL Server 2019 on Linux

There are three main questions you will be asked during the configuration:

Figure 5.2: Configuration of the SQL Server installation

In Figure 5.2, I chose to enter 2 for the Developer edition.

You will then be asked to confirm your agreement with the licensing terms and then
to set the SQL Server administrator password, and then confirm it. If the entries don't
match, you will be given another chance to enter the password and confirmation.

Once this is done, then the configuration script will complete the process. A symlink
will be created and the SQL Server processes will be restarted to finish the installation.

Then we can verify that the service is running. As this is a Linux process, there are two
ways to do this:

systemctl status mssql-server

The output is as follows:

Figure 5.3: Status of the SQL Server service on Linux

Why move databases to SQL Server on Linux? | 149

The system control will return a validation of the service (if it's running) and identify
what process IDs are part of the service. For SQL Server, there are two that fork from
the service, shown in the preceding example as 10172 and 10196.

You can also see this same information by using the following process utility command:

ps -ef | grep sqlservr

Figure 5.4: checking for running processes on Linux

As you can see in the example, the same two processes are displayed (10172 and 10196),
along with the parent process IDs (1, 10172), the start time (21:20), and the executable
path (/opt/mssql/bin/sqlservr).

The last step is to ensure that the ports required for remote connections are open. If
this step isn't performed, connections will time out:

sudo firewall-cmd --zone=public --add-port=1433/tcp –permanent

The firewall must be restarted to put the changes into effect:

sudo firewall-cmd --reload

Once you have installed SQL Server, there are multiple ways to interact with your
instance. It's essential to have access from the host, and to do so requires the sqlcmd
utility. To install it, first you must add it to the repository (if it's not already available).
You must switch over to the root user to update the repository files:

$ sudo su

Once you're switched over, update the repository with a new entry:

$ curl https://packages.microsoft.com/config/rhel/7/prod.repo > /etc/yum.
repos.d/msprod.repo

$ exit

After you've exited as a super-user, run the installation. Answer yes to any questions
confirming the installation:

$ sudo yum remove mssql-tools unixODBC-utf16-devel

$ sudo yum install mssql-tools unixODBC-devel

150 | SQL Server 2019 on Linux

Once the installation is complete, you can log into your new SQL Server instance using
the following command, and entering the password when prompted:

$ sqlcmd -S locahost,1433 -U <username>

Now that you have installed SQL Server, configured your installation, and have
command-line tools in order to interact with the instance, it's time to find out more
about interacting with Linux.

Improvements in SQL Server 2019

This book contains chapters that focus on different areas of the SQL Server 2019
release, but there are significant enhancements around the SQL Server 2019 release for
Linux that deserve to be highlighted in their own chapters. It is worth taking the time to
understand how these enhancements affect performance, features, and interaction with
Linux. One of the most important enhancements is the interaction between SQL Server
2019 on Linux and services such as Azure Machine Learning and the Azure Kubernetes
Service.

Machine Learning Services on Linux
Machine Learning is a service, but it's accessible from a SQL Server 2019 on a Linux
virtual machine or on-premises Linux host. Data Scientists can connect to and create
new data models in Azure Notebooks or the well-known Jupyter Notebooks, using
Python and/or R to choose pipelines or run pipelines to perform machine learning.

Supported Linux distributions and installation formats include:

•	 Redhat Enterprise Server

•	 Ubuntu (apt)

•	 SUSE (zypper)

•	 Redhat, SUSE, and CentOS (RPM)

Machine Learning Services on Linux | 151

Following the installation and configuration of SQL Server 2019 on Linux, a subsequent
installation of the mssql-mlservices package must be performed in the same repository
as the existing SQL Server. The process of installing this is dependent upon the Linux
distribution (yum for RedHat, apt-get for Ubuntu, and so on), but there are steps that
need to be performed afterward in order to complete it successfully:

1.	 Add the MSSQL Linux user to the configuration account for the Machine Learning
service.

2.	 Issue the command to accept the end-user license.

3.	 Configure the networking and port settings for Python.

4.	 Set the environment variables for R in the .bashRC file

5.	 Update the SQL Server configuration to make external scripts enabled.

6.	 Restart all services and the database to put the configuration changes into effect.

admin-cli is required to configure and manage the web and compute nodes that are
part of operationalizing machine learning servers. This includes stopping and starting
Linux resources that are part of the machine learning server configuration and running
diagnostics when something is amiss.

The az command is used to perform the next steps to test and configure endpoints:

az login

The next step is to use the specific machine learning commands to configure servers
that will be part of the Machine Learning service:

az ml –admin –endpoint <endpoint>

Once you've run the command to add any and all servers to the configuration, run a
diagnostic to validate the additions:

az ml –admin diagnostic run

The command-line utility uses similar commands in Azure, utilizing the az ml admin
command, and this includes the help option to return arguments and descriptions of
each:

az ml admin –help

Data can then be stored inside SQL Server 2019 and pre-packaged stored procedures
simplify machine learning and utilize resources from Azure Machine Learning to
distribute the workload.

152 | SQL Server 2019 on Linux

Predictions on continuous models (also known as regression modeling), forecasting,
and classifications can be performed using AutoMLTrain. This will train, validate, black-
and white-list, along with other machine learning data modeling training, and are then
stored inside SQL Server tables. Metrics are then returned when the AutoMLGetMetrics
stored procedure is executed, and new predictions are created from the originally
trained values with the AutoMlPredict stored procedure.

This is an impressive update considering that only Python was available in SQL Server
2017, and we needed sp_execute_external_script to run Python inside the database.

The biggest takeaway for the data platform professional is to understand that machine
learning is available to beginner and expert data scientists using SQL Server 2019 and
Azure Machine Learning without extensive knowledge, allowing everyone to reap
the benefits of machine learning. To read more about this scenario, go to: https://
cloudblogs.microsoft.com/sqlserver/2019/04/16/automated-machine-learning-from-
sql-server-with-azure-machine-learning/.

Kubernetes
Microsoft, to further embrace containers open-source paradigm, have added additional
capabilities in SQL Server 2019 when running docker images in Kubernetes-based
deployments. Just as with other deployment orchestration platforms, Kubernetes
primary purpose is to run orchestrated container-based workloads within clusters
of multiple nodes. For the SQL Server database administrator, Kubernetes is often
used with the goal of either high availability (HA), or scalability. SQL Server 2019 can
take great advantage of this orchestration, allowing for faster recovery times due to
interruption of service and failover orchestration deployments within multiple pods
between clusters, which can also increase scalability opportunities.1

Figure 5.5: Diagram of Kubernetes cluster architecture

https://cloudblogs.microsoft.com/sqlserver/2019/04/16/automated-machine-learning-from-sql-server-with-azure-machine-learning/
https://cloudblogs.microsoft.com/sqlserver/2019/04/16/automated-machine-learning-from-sql-server-with-azure-machine-learning/
https://cloudblogs.microsoft.com/sqlserver/2019/04/16/automated-machine-learning-from-sql-server-with-azure-machine-learning/

Kubernetes | 153

A pod, as demonstrated in Figure 5.5, can contain single or multiple containers. One of
the benefits of pods is that they have all the benefits associated with containerization,
including portability and highly optimized resource utilization. Along with the pods and
containers, there are deployment controllers that execute

For SQL Server 2019 containers to run successfully inside Kubernetes, state persistence
must be set up. It relies on storage resources, (that is, volumes) accessible by underlying
cluster nodes.

Figure 5.6: Diagram of high availability Kubernetes cluster with SQL Server 2019 and persistent storage
for fast recovery scenario.

The generic volumes typically serve as persistent stores for containerized workloads.
They can also serve as local disks attached directly to individual cluster nodes or shared
storage mounted across multiple nodes if needed for specific configurations.

In case of failure for a SQL Server 2019 deployed to a Kubernetes cluster, quicker
recovery due to clustering can be achieved thanks to the storage and clustering
configuration.

For monitoring, standard Kubernetes tools are the best choice and SQL Server
containers are available to monitor from standard database monitoring and
management tools. With the increased recovery, flexibility and scalability options,
Kubernetes is an attractive choice for SQL Server 2019 with Linux.

154 | SQL Server 2019 on Linux

Working with Docker and Linux
To create a Docker container with an installation of SQL Server 2019 included, you'll
require a local installation of Docker or Docker server access. Using an example for
Windows, open Command Prompt (running Docker commands inside the PowerShell
command line can lead to inconsistent results).

Check for existing Docker containers that are currently available and their status:

$ docker ps -a

Each container must have a unique name. Ensure that you use proper values for the
password, port(s), and container name before running the following command:

$ docker run -e "ACCEPT_EULA=Y"

 -e "MSSQL_SA_PASSWORD=<password>"

 -p <port:port>

 --name <container name>

 -d mcr.microsoft.com/mssql/server:2019-CTP3.2 ubuntu

View a list of your containers and verify that the container has not only been created,
but is running:

$ docker ps -a

Access your container, log in, and run in Bash:

$ docker exec -it <container name> "bash"

Docker should log you into the container, and the command prompt should be
displayed. You are now interacting with Linux and not your workstation command
prompt. Although these steps aren't very different to other Docker commands, knowing
how easy it is to build a Docker image with Linux and SQL Server is important. If you
have a Linux Docker image already in place, the instructions for installing SQL Server
can be performed with minor changes to add SQL Server to it, then an image can be
created in order to save time and management going forward.

Adding Kubernetes to this combination then pushes it farther by allowing pods to be
built out of Docker containers that are part of a group: application, database, and web
containers that all belong as part of one deployment, granting the DBA the ability to
work with the rest of the IT system to serve the business better. By doing this all in
Linux, the SQL Server DBA can be more collaborative, less siloed, and can do it all faster.

Change data capture | 155

Change data capture
The change data capture (CDC) feature in SQL Server is a valuable way to ingest data
from a source, transform it, and then publish it to new tables or a secondary database.
This feature is now available in SQL Server 2019 for Linux.

As the code base is the same in SQL Server for Linux as it is for Windows, the same
process is required to enable the feature:

EXEC sys.sp_cdc_enable_db

This will create the system objects, the CDC user, metadata, and the CDC schema as
part of the procedure to set up CDC.

The same templates available from SQL Server Management Studio (SSMS) in
the Template Explorer will work for CDC in Linux and can speed up the process of
implementing a CDC solution.

Hybrid Buffer Pool and PMEM
Eliminating latency is the goal of optimization and persistent memory. PMEM, or
storage class memory, is a new tool that helps by bypassing making a copy of data in the
clean pages area of the buffer pool and instead stores these pages in PMEM so that they
can be directly accessed in a new feature called Hybrid Buffer Pool.

PMEM stands for persistent memory, and it's an area of non-volatile storage that
performs similarly to memory. As the term can also be used to describe hardware, there
may be some confusion as to what it's called, the following should clarify this:

•	 PMEM or PM (Persistent Memory)  This is the correct term for SQL Server 2019

•	 Storage Class Memory (SCM)

•	 Non-Volatile Memory (NVM)

•	 Byte-Addressable Storage (BAS)

For SQL Server 2019, PMEM is part of the memory bus and eliminates I/O latency. It
does this by eliminating the extra need to copy pages to DRAM or the I/O penalty of
going to disk. There's a performance gain from accessing persistent storage designed
specifically for this purpose. To enhance this feature, Microsoft has added the ability
for Hybrid Buffer Pool to run in enlightened mode, letting it use memcpy operations to
access persistent storage directly.

156 | SQL Server 2019 on Linux

Database files that can take advantage of PMEM include:

•	 Database files

•	 Transaction logs

•	 In-memory OLTP checkpoint files

To utilize PMEM, you need to enable enlightenment of the files you want SQL Server
to take advantage of PMEM with. This will require a Linux utility used to manage
non-volatile memory, named ndctl. If it isn't already on the Linux host you have
installed SQL Server 2019 on, you will need to install it, most likely using yum or apt-get.
Depending on the Linux distribution, the following steps may have to be performed to
configure NDCTL after the installation:

$ sudo install ndctl

Installed:

 Ndctl.x86_64 0:62-1.el7

$which ndctl

/usr/bin/ndctl

Once configured, to enable PMEM on a file, you need to create a namespace, a location
of isolated storage that will be used for PMEM:

$ndctl create-namespace -f -e namespace0.0 –mode=devdax –map=mem

In the example, I've created a PMEM namespace using cloud storage I created
specifically for the Hybrid Buffer Pool. You can view what namespaces have been
created using the following command:

$ ndctl list

The next step is to mount the namespace and set the extent size. For our example, we'll
name the mount pmem1 and make the extent size 2m:

$ mkfs.xfs -f /dv1/pmem1 mount -o dv1,noatime /dv1/pmem1 /mnt/dv1

xfs_io -c "extsize 2m" /mnt/dv1

Once configured, then we can allocate files to use PMEM, but you must restart SQL
Server before the changes can take effect:

$ sudo systemctl stop mssql-server

$ sudo systemctl start mssql-server

And once you've restarted SQL Server, check the status:

$ sudo systemctl status mssql-server

Distributed Transaction Coordinator on Linux | 157

Now that you've verified that the restart has completed, you can create a new database
to take advantage of PMEM or choose to move files from an existing SQL Server to the
PMEM location. Moving datafiles to this new location is no different than moving files to
another existing drive.

Log into the database using sqlcmd and move the files:

sqlcmd -U <login> -S "<localhost,port>"

ALTER DATABASE database_name SET OFFLINE;

GO

ALTER DATABASE database_name MODIFY FILE (NAME = logical_name, FILENAME =
'/dv1/pmem1/<dbname>/data');

GO

Once this is complete, bring the database online and available:

ALTER DATABASE database_name SET ONLINE;

GO

For data files that were moved to the new PMEM location, you can enable Hybrid Buffer
Pool using:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED HYBRID_BUFFER_POOL = ON;

Or:

ALTER DATABASE <databaseName> SET MEMORY_OPTIMIZED = ON;

It's important to remember that only clean pages are directly referenced on a PMEM
device. Dirty pages will be kept in DRAM and will eventually be written back to the
PMEM device once they're clean.

Distributed Transaction Coordinator on Linux
With the introduction of the endpoint mapper functionality for SQL Server 2019 on
Linux, the addition of Microsoft Distributed Transaction Coordinator (MSDTC)
has become easy, too. MSDTC on a Linux host or VM will need port 135 open for the
RPC endpoint mapper process to bind (network.rpcport). Best practice also dictates
that you should definitively set the port MSDTC listens to (distributedtransaction.
servertcpport); otherwise, a random port can be chosen upon restart, creating a loss in
service when a firewall exception hasn't been prepared for the change in ports that are
open to the outside.

158 | SQL Server 2019 on Linux

To statically set the port for MSDTC to listen to, use the following command:

$ sudo /opt/mssql/bin/mssql-conf set network.rpcport 13500

SQL Server must be restarted for this change to take effect:

$ sudo systemctl restart mssql-server

After this configuration change, the firewall rules will need to be updated on the Linux
host. Depending on the Linux distribution, the command could differ, but for Red Hat,
it's as follows:

$ sudo firewall-cmd –zone=public –add-port=135/tcp

Do this for each port that must be open for MSDTC, then reload to put the changes into
effect:

$ sudo firewall-cmd –reload

To complete the process, you must install the stored procedures for MSDTC into the
database that will be taking advantage of the host configuration. Log into the database
with sqlcmd and enter the following commands:

$ sqlcmd -U <login> -S "<dbserver>.database.windows.net" -d <database name>

 exec sp_sqljdbc_xa_install

After installing these valuable stored procedures, you'll be able to use the XA
procedures in the database for MSDTC. For those who want MSDTC on all their
databases, SQL Server 2019 now provides it on Linux as well.

Replication
A DBA's ability to provide access to the data for the business is an essential part of the
role. Replication of data to secondary databases, either for reporting, data protection,
or transformation, is an important feature. SQL Server 2019 on Linux now includes
support for replication outside of VM replication with Site Recovery. The architecture
support includes SQL Server 2019 on Linux in a container with the SQL Agent.

In any SQL Server replicated environment, there are three main identifiers:

•	 Publisher

•	 Subscriber

•	 Distributer

SQL Server tools | 159

Due to the goal of replication being failover if a failure occurs, a SQL Server instance
that is part of a replication scenario can be any one of the three options. Replication
configuration can be performed from the command line with stored procedures, or
from SSMS Publication types are decided by the subscriber's needs:

•	 Transactional: A per transaction replication from publisher to subscriber.

•	 Snapshot: A set of replicated transactions and updates on a regular interval are
collected and applied to the subscriber.

•	 Merge: Changes are merged from the publisher to the subscriber environment.

A solid replication architecture design, including geo-replication, can offer disaster
recovery, secondary reporting environments, and manual high availability. With
this addition to SQL Server 2019 on Linux, this offers more options for the business
regarding which OS to run SQL Server on.

SQL Server tools
The tools you use to interact with the database are incredibly important to how you
work every day. With the introduction of Linux, the shift in how you manage the
database doesn't have to change as much as you might expect.

Azure Data Studio

Azure Data Studio is the newest cross-platform tool available from Microsoft. While
many database professionals still use SSMS, this required a Windows or Windows VM
to run the product. Azure Data Studio provides support for not just Windows, but also
macOS and Linux.

Azure Data Studio also keeps in step with application/development integration,
including integration via Git/GitHub, and the output from the console can be saved in
various formats, including CSV, text, and JSON.

There are monthly releases of the product, and these updates mean new features
and consistent enhancements. Azure Data Studio is available for most common Linux
distributions:

•	 Red Hat Enterprise Linux 7.4

•	 Red Hat Enterprise Linux 7.3

•	 SUSE Linux Enterprise Server v12 SP2

•	 Ubuntu 16.04

160 | SQL Server 2019 on Linux

There are three different installation methods to support the various Linux
distributions in the form of a Debian file, an RPM file, and a gzipped TAR file.

Depending on the Linux distribution, the installation will be slightly different. All the
following commands assume that you are logging in with the user that will be copying
the file to the host and that the installation will be performed in the user's home
directory. For Debian, a simple Bash command will perform the installation. While
logged into your host or VM, open a terminal after downloading the file and perform
the following, depending on the installation.

DEB for Debian:

cd ~

sudo dpkg -i azuredatastudio-linux-<version>.deb

YUM for Redhat or CentOS:

cd ~

yum install ./azuredatastudio-linux-<version>.rpm

TAR for Ubuntu, SUSE, etc.

For the TAR file installation, again, log into the host or VM and then you must untar
(extract) the file and add the environment path to the main path in order to run the
command file (.bashrc):

cd ~

cp ~ /<directory the file was downloaded to/azuredatastudio-linux-<version>.
tar.gz ~

tar -xvf ~/azuredatastudio-linux-<version>.tar.gz

cat 'export PATH=$PATH:~/azuredatastudio-linux-x64"' >> ~/.bashrc

Once you have installed Azure Data Studio, you can launch it by typing the following at
the terminal:

azuredatastudio

Once it's launched, click on New Connection. The following values are required to
connect successfully:

•	 Connection type: Microsoft SQL Server, (Azure SQL, Azure Data Warehouse),
Microsoft BDC

SQL Server tools | 161

•	 Server: For Azure, this information is displayed in the server resource overview:

Figure 5.7: Azure host information in the Azure portal

•	 Authentication type: SQL Login or Windows Authentication or Azure Active
Directory

•	 Username: Self-explanatory and depends on the choice in Authentication Type

•	 Password: Password for the user

•	 Database: Database to connect to once logged into the server

•	 Server group: Optional (set to default in the connection)

•	 Name: Optional

Figure 5.8: Configuring a connection in Azure Data Studio

162 | SQL Server 2019 on Linux

If you haven't logged into the Azure resource previously, a prompt will take you through
setting up a firewall rule to access the resource; otherwise, you'll be connected to the
database and you'll be ready to manage resources.

There are numerous keyboard shortcuts pre-configured in Azure Data Studio, and you
can personalize and add your own. Click on File | Preferences | Keyboard Shortcuts.
The following window will pop up:

Figure 5.9: Keyboard shortcut configurations for Azure Data Studio

From the Ubuntu console, you can start a new notebook by typing Ctrl + N. The JSON
configuration has been minimized as much as possible to make it easier for those who
are more accustomed to using SQL, providing as much value as possible when using
SQL to complete what is needed.

The benefit of Azure Data Studio is the ability to build out what is needed to make you
most productive. There are extensive visualizations to monitor database performance
and usage, which is a benefit for those who are new to managing databases on Linux
hosts.

Command-line query tools for SQL in Linux | 163

Command-line query tools for SQL in Linux
There are two primary command-line query tools that are available for SQL Server on
Linux, one that is old and one that is brand new:

•	 sqlcmd

•	 mssql-cli

SQLCMD

For the SQL DBA, SQLCMD is a familiar command-line tool that is also available in
Linux. This is part of the mssql-tools installation that will be available for most, if not
all, SQL Servers on Linux, and can be used to run scripts, query databases, and system
procedures.

Installation differs depending the Linux distribution, but for our example, the Ubuntu
installation will be used to show how an installation would be performed to update the
package to your Ubuntu update for the latest mssql-tools package and then installation:

sudo apt-get update

sudo apt-get install mssql-tools

Updates are regularly available for the SQLCMD utility. The newest additions are
available for the following Linux distributions, and now include Azure Active Directory
multi-factor authentication:

•	 Red Hat Linux, Enterprise

•	 Ubuntu

•	 SUSE Linux Enterprise Server

•	 Docker

•	 MacOS

The following is an example of using sqlcmd to log into a SQL Server database on Linux
and run a query:

sqlcmd -U <username> -S "<vmname>. <zone>.cloudapp.azure.com" -P "<password>"
-d "<database>" -Q "<sqlstatement>; "

sqlcmd -U <username> -S "<vmname>. <zone>.cloudapp.azure.com" -P "<password>"
-d "<database>" -i "<filename>.sql"

164 | SQL Server 2019 on Linux

One of the biggest additions to sqlcmd is an older feature that's been rediscovered and
is beneficial to large table migrations in the cloud: Bulk Copy Protocol (BCP). Many
databases have only a few very large tables as part of a migration that aren't fulfilled by
traditional migration means. One of the ways to accomplish a successful data migration
is to use a simple migration utility that removes all complex user interfaces and added
features, such as BCP.

MSSQL-CLI

The newer command-line tool focused on the Linux server, MSSQL-CLI was added in
SQL Server 2017 as a tool with the future in mind. The installation is maintained via
GitHub, and a large set of Linux distributions are currently supported:

•	 Debian 8 and 9

•	 Ubuntu

•	 CentOS 7

•	 OpenSUSE 42.2

•	 Red Hat Enterprise Linux 7

•	 SUSE Enterprise Linux 12

•	 Fedora 25 and 26

Installation is a single simple command:

$ pip install mssql-cli

Once it's installed, you have access to another query tool to use in interaction with SQL
Server databases on Linux, macOS, and Windows. Unlike sqlcmd, MSSQL-CLI includes
T-SQL IntelliSense, so as you type in your query, potential options for columns, tables,
and procedures will be provided to ease demands on the user, decrease the amount of
manual entry, and decrease the potential for errors:

Figure 5.10: IntelliSense population for columns in MSSQL-CLI

Enhanced focus on scripting | 165

Multi-line edit mode and syntax highlighting provides the ability to format statements
for ease of readability and management. A configuration file can personalize settings to
create a better end-user experience, too.

Enhanced focus on scripting
With the release of SQL Server 2019, a significant amount of enhancements and feature
releases for the Linux release provide a more robust experience. Recognizing that
the technology industry has embraced Linux as the enterprise OS platform of choice,
Microsoft has invested heavily in making it easy for the SQL DBA to move current
database workloads to Linux, with as little impact as possible on the business.

One of the biggest breakthroughs from the DBAs point of view was the addition of
PowerShell on Linux. A DBA is often viewed as only as good as the suite of scripts
they are using to ease the management, maintenance, and monitoring of the database
environment. Having the ability to lift and shift these scripts and their workload reduces
the demand for the DBA to recreate something they'd already invested considerable
time in.

An important fact remains. No matter how essential PowerShell is to the SQL DBA, it
still isn't at a point where it can compete with the history and maturity of Bash. In all
areas of SQL Server 2019 tools, there will be an option to export templates in multiple
scripted formats. The one that is listed as the command-line interface (CLI) is really
Bash scripting.

It can be a bit intimidating for anyone who strongly identifies with PowerShell that
another shell scripting language currently has the upper hand, but as PowerShell builds
from its infancy on Linux, it faces an uphill struggle with Bash. As someone who was
trained on the Korn shell, the situation resonates with me. Although my preferred
scripting language is Korn, I recognize that Bash is the shell scripting language with the
most seniority, and it's important to understand that knowing more than one scripting
language makes you more of an asset in your technical career.

The SQL DBA in the Linux world
There are some vital differences between Linux and Windows. An essential difference is
that in Linux, everything is configured as a file. Even directories and device drivers are
identified as text files. The kernel views the directory structure as a series of files with
a clear hierarchal layout that culminates in the root directory (also known as /). The
concept of alphabetical identifiers as mount points is different on windows, which are
more likely to be identified by user (u) or disk (d).

166 | SQL Server 2019 on Linux

For all this identification, very little of it has any meaning for the Linux kernel. As it
identifies everything as a file, it doesn't require an understanding of hierarchy and
is programmed to identify everything in a horizontal structure. The kernel refers
to everything via nodes. The unique identifiers that represent each file, directory,
and permission among the nodes allows the kernel to search, locate, and identify all
processing at immense speeds.

Users and groups

Along with root, there are users that are created to create clear and defined logins and
access. These are the logins and owners of files on the OS, and each of these users is
assigned to one or more groups that allow them a set of permissions for different file
structures. For the Oracle DBA, it is common to log in as their username (for example,
dsmith) and then switch user (with the su command) over to Oracle (the database and
Oracle installation owner) to perform critical tasks.

Figure 5.11: Switching user with the su command

Belonging to a group allows you to perform the same tasks and have access to files in
directories. Each user in an enterprise Linux server environment has a home directory
that contains configuration files and aliases for the user. The names of these files are
often prepended with a dot, and this is to ensure they aren't displayed by a simple list
(ls) command unless specifically requested.

Azure Cloud Shell

If you are working on a VM with SQL 2019, you have the option to interact with the host
via the command line in Azure Cloud Shell. This web interface offers simplified access
to all cloud resources inside your Azure environment, and with the addition of Azure
cloud storage, a static storage resource to house files and scripts. Azure Cloud Shell
provides the option to set the session to Bash or PowerShell, but both types of scripts
can be executed from either shell profile.

The benefit of Azure Cloud Shell is quicker access to resource information, the
automation of mass deployments, and VM changes from the command line. The
Azure portal allows those who are less comfortable with the CLI to manage most of
these same things. Numerous extensions are also available specifically to facilitate
management and deployment tasks, including Azure DevOps, GitHub, and Jenkins.

Windows Subsystem for Linux | 167

Windows Subsystem for Linux
The second option for many to consider is for those users on Windows 10. It's the new
Windows Subsystem for Linux version 2 (WSL2). Unlike an emulator, WSL2 is a full
Linux kernel inside Windows, providing the ability to run any terminal commands as
you would on a full Linux system. This means that an emulator is no longer required.
WSL1 was released with Azure Sphere last year, but this is the first time a Linux kernel
will ship with Windows, and WSL2 will take the Windows professional to the next step
of true kernel-level performance and interaction.

Root, the super-user

Root is similar, but not equivalent to the Administrator on a Windows server. Root is
referred to as the super-user and the owner of the top-level directory and the OS on a
Linux server.

Figure 5.12: Example of files and directories in Linux

Root has power over everything inside the Linux OS. A DBA must remember this when
granting root access to a Linux host. Best practice says that no one should log in as root
unless a distinct requirement exists, and then it should be done with extreme caution.

Switch User Domain Owner (SUDO) privileges are granted to a user with the
knowledge to perform deep-level actions, but all SUDO actions are logged and are
easily audited in the server logs if no switch from their original login was performed.
SUDO should also be used with caution and only when necessary due to the sheer
capability of the root user. The login to the Linux box should be owned by a unique
user, and then the user should switch user (su - <super user>) to perform the task that
requires escalated privileges.

168 | SQL Server 2019 on Linux

An increase in security breaches across the globe, along with the addition of the cloud,
has emphasized the importance of server design, including users who have access to
super-user and other privileges. Application user logins should only use SUDO, stick bit,
iptables, SUID, SGID, and other proper group creation/allocation when required.

Most current installations of SQL Server on a Linux host I've encountered are installed
as root, also known as the domain owner. This isn't a viable installation, and the
vulnerability can be understood if we use an example of a Linux host with SQL Server
that utilizes a traditional Excel data load process.

If an Excel spreadsheet with undetected malware is uploaded onto the Linux host, it
will be owned by root, offering a hacker full access and privileges as root. If a proper
configuration had been chosen, with the SQL Server installation and folders owned by
an application user with limited privileges, this type of attack would be isolated and
therefore would have less of an impact.

DBAs follow strict guidelines regarding granting database privileges, and Linux
administrators will consistently request that a DBA or application developer justifies
greater permissions to any directory or protected file on the Linux host.

By using su and sudo privileges, the Linux OS can audit who is performing tasks that
require su privileges and clearly identify the original user. The need to switch over to a
more privileged user may assist in deterring human mistakes. su and sudo have less data
access than the owner of the files, providing data security.

The goal of this chapter was to introduce you to the impressive new features of SQL
Server 2019 on Linux and the vast enhancements since the release of SQL Server 2017,
including:

•	 Supported distributions of Linux

•	 Installation of SQL Server on Linux

•	 Machine learning services

•	 High availability and containers

•	 SQL Server tools for Linux

•	 Understanding Linux as a SQL Server DBA

This information should give you a strong foundation for the features and changes
required to manage SQL Server 2019 on Linux to help you understand why so many
have brought this OS platform into their own organization. Also consider spending the
time to dig into chapters dedicated to features such as AGs, containers, and SQL tools
to get the most out of this book.

Most SQL Server deployments are achieved via traditional methods: on physical servers
or virtual machines (on-premises or in the cloud). Cloud-based offerings such as Azure
SQL Database or Azure SQL Database Managed Instance are considered Platform
as a Service (PaaS) offerings and offer the ability to deploy databases and instances
respectively without needing to worry about managing the underlying operating
system (OS). There is now a newer option to consider for deploying SQL Server:
containers.

SQL Server 2017 was the first version of SQL Server to support containers. While
containers are part of SQL Server Big Data Clusters (see Chapter 9, SQL Server 2019 Big
Data Clusters), there is more to them than just being a component of that story. This
chapter will cover what containers are, why they are important, and how they have
been improved in SQL Server 2019.

SQL Server 2019
in Containers and

Kubernetes

6

172 | SQL Server 2019 in Containers and Kubernetes

Why containers matter
Virtualization revolutionized server deployments. Instead of buying and installing a
physical server for every SQL Server instance, one server, known as a hypervisor, could
run multiple virtual machines (VMs) that virtualized the hardware and could have an
OS installed inside of it. A VM is a software-defined representation of a physical server
that provides agility for IT in a way that traditional hardware cannot.

A container is similar, yet different, and arguably the evolution of virtualization. Instead
of virtualizing the host and managing it as you would a traditional physical server, such
as installing software and patching the OS and applications, containers virtualize the
OS, not the hardware. The abstraction is completely different and will be explained
more in the Container technical fundamentals section.

While an OS is still required for a SQL Server container, the major difference is that
the OS (specifically its kernel) is shared, or virtualized, across all containers running on
the host running the same container image. Just like traditional virtualization, a host
can run one or many containers, each of which has its own processor and memory
resources, along with separate process IDs. A container is smaller, and therefore, more
portable than a VM.

VMs provide a natural security boundary because the OS and what is running inside of
the guest are isolated. VMs do not offer isolation for applications since a change to one
can affect the other because they are running in the context of the same OS installation.
Containers provide isolation for applications and all dependencies are within the
container image so they can be updated independently. However, understand that
multiple containers could be affected if something happens to the underlying shared
kernel, so heeding security updates is important.

Because a container does not have a full OS installation, it provides abstraction for
applications. You can bundle code and dependencies together, such as scripts and
executables, inside a container in a way that is challenging to do with a VM. Need
to deploy one or a hundred of the same application across the globe easily? Use a
container. You have the ability to deliver new versions of software (SQL Server, an
application, whatever you have) quickly and be able to roll them back (or forward with
an update) easily. It is basically as simple as swapping the container; you do not run
individual installers. Without having to patch an OS and SQL Server in a traditional way,
things get more interesting.

Container technical fundamentals | 173

Size, portability, ease of deployment, and isolation intersect with the DevOps and
continuous integration/continuous deployment (CI/CD) movements. For application
developers, the ability to ship changes as a whole unit and manage updates in a
controlled fashion gives production environments the ability to deal with issues much
quicker. Need to revert to a previous version? Swap out the container. Want to update
the version? Swap out the container. All of this takes very little time compared to
traditional deployment methods.

Figure 6.1 shows the difference between containers and VMs at a high level:

Figure 6.1: Containers versus VMs

Container technical fundamentals
Containers can currently be deployed in two ways: using Docker and through an
orchestration method such as Kubernetes (K8s), both of which will be addressed in this
chapter in a bit more detail. The fundamentals described in this section apply to both.

Think of an OS in two parts: the core functionality and APIs, and the presentation layer.
A command-line interface or graphical user interface (GUI) is just an application/
presentation layer that interacts with the core OS. It is the core OS that is virtualized
across different containers.

A container image is the most fundamental component in the container ecosystem
and is published to a registry. Microsoft provides SQL Server container images that
are based on Docker. Docker is what allows you to build a container image, but it
also allows you to run an image. Docker runs natively on many OSes, which makes it
convenient for developers to write container-based applications.

174 | SQL Server 2019 in Containers and Kubernetes

By default, storage for container images is ephemeral or temporary. This means that if
the container image is swapped out for a new one, anything stored would be lost. SQL
Server requires storage that does not go away, which is possible with both Docker and
K8s.

Deploying an SQL Server container using Docker
Docker is a good deployment method for non-production containers. Persistent storage
is achieved on Docker using volumes (https://docs.docker.com/storage/volumes/),
which tell the container what to use and where to map it. This section will cover how
to deploy a SQL Server container using Windows 10, the built-in Hyper-V feature, and
Docker. If you are using another platform, you can adapt the instructions accordingly:

1.	 Ensure Hyper-V is enabled.

2.	 Install Docker.

3.	 Configure Docker so that deployed containers can use at least 2 GB of memory. An
example is shown in Figure 6.2:

Figure 6.2: Setting the memory to 2 GB in Docker

https://docs.docker.com/storage/volumes/

Deploying an SQL Server container using Docker | 175

The default is 1 GB. If you do not configure this setting, you will get the following
error when trying to create a container:

sqlservr: This program requires a machine with at least 2000 megabytes of
memory.
/opt/mssql/bin/sqlservr: This program requires a machine with at least
2000 megabytes of memory.

4.	 Pull the SQL Server image from the repository. This example is for SQL Server
2019 CTP 3.0. You could have more than one image downloaded. An example pull
can be seen in Figure 9.3:

docker pull imagename

Here, imagename is the proper name of the image in the online repository:

Figure 6.3: Pulling the SQL Server 2019 container image

5.	 Create the container with the following command:

docker run -e ACCEPT_EULA=Y -e SA_PASSWORD=StrongPassword -d -p host_
port:sql_port -–name containername imagename

Here, the following applies:

•	 -d means to run the container in the background.

•	 host_port is the endpoint port on the host.

•	 sql_port is the port where SQL Server is listening in the container.

•	 containername is the name of the container that is being created.

176 | SQL Server 2019 in Containers and Kubernetes

•	 imagename is the name of the container image that was pulled.

If successful, you should see something similar to Figure 6.4:

Figure 6.4: Creating a Docker container

Note

On Docker for Windows, do not put anything after the -e in single quotes. The
container will not start. Other platforms may require them.

Without -d, the container will start as shown in the example in Figure 6.5, and will
be running in the context of that command window. You can hit Ctrl + C and the
container will still be running, but that is not apparent until you run the command
in the next step:

Figure 6.5: Running a container in the foreground

Deploying an SQL Server container using Docker | 177

The previous examples create containers with ephemeral storage. That means
every time the container is started, everything will be reset. To create a container
with permanent database storage, first ensure that the drive containing the folder
is shared, as shown in Figure 6.6:

Figure 6.6: Sharing the drive with the data folder

178 | SQL Server 2019 in Containers and Kubernetes

Add the -v option, which bind mounts a volume in the container. If you want to
use C:\sqldata, execute the following command, where foldername is the path
to the mounted storage. An example showing a folder before and after container
creation is shown in Figure 6.7:

docker run -e ACCEPT_EULA=Y -e SA_PASSWORD=StrongPassword -d -p host_
port:sql_port -vfoldername:/var/opt/mssql/data -–name contanername
imagename

Figure 6.7: Folder before and after creating the container

6.	 Check that the SQL Server container just created is running by using the docker ps
-a command. An example is shown in Figure 6.8:

Figure 6.8: Verifying that the container is running

7.	 At this point, you can test connectivity to the container running SQL Server. There
are two ways to approach this: connect directly using Docker and Bash, or via local
SQL Server utilities on your workstation.

Deploying an SQL Server container using Docker | 179

Using Docker and Bash

1.	 Run the docker exec -it containername command, where containername is the
name of the container.

2.	 At the command prompt, run /opt/mssql-tools/bin/sqlcmd -S localhost -Usa
-PStrongPassword. You should now connect to the instance running in the
container and be able to execute commands. An example is shown in Figure 6.9:

Figure 6.9: Connecting to the container using sqlcmd

Using local SQL Server utilities

You can use sqlcmd, bcp, SQL Server Management Studio (SSMS), Azure Data Studio, or
any other compatible tool to connect to the local Docker container. You need to specify
the IP address of the local machine with the local port you specified when the container
was created with the sa account and password. An example IP address with the port
is 192.168.1.104,1403. Figure 6.10 shows SSMS on a workstation with that IP address
connected to a Docker container running on it. Note that the value for @@SERVERNAME is
the same as the container ID, not the friendly name:

Figure 6.10: Connected to a Docker container in SSMS

180 | SQL Server 2019 in Containers and Kubernetes

Customizing SQL Server containers
A base SQL Server container image has the Database Engine, SQL Server Agent, and
Customer Experience Improvement Program (CEIP). That means Agent and CEIP can
be enabled or disabled. By default, SQL Server Agent is disabled and CEIP is enabled.
The easiest way to customize the container is when it is created with docker run (or
in the YAML scripts for Kubernetes). The -e option specifies the runtime parameters
when creating the container. The options follow what is listed in the "Configure SQL
Server settings with environment variables on Linux" topic at https://docs.microsoft.
com/en-us/sql/linux/sql-server-linux-configure-environment-variables?view=sql-
server-2019. For example, to enable SQL Server Agent, add -e MSSQL_AGENT_
ENABLED=true.

Unlike SQL Server on Linux deployed on a physical or virtual server, there is no mssql-
conf utility to configure SQL Server using Bash, so any configuration of major items
such as SQL Server Agent should be done at creation.

Outside of enabling or disabling those two components, the options for customizing
a container image published by Microsoft for SQL Server are somewhat limited. For
example, you can change collation and language.

If you want a fully customized container image, you would need to start with a base
image (Ubuntu or Red Hat), install SQL Server and add all the supported components
for customization that you need. This can be done via Docker file or (https://docs.
docker.com/engine/reference/builder/#usage) by taking the image and modifying it
such as creating a database that will be used by all deployments. You can then create
the new image by committing the changes which will render it ready for deploying, and
in some cases, building the image.

While Microsoft may provide more flexibility or more options in the future for
customizing the provided SQL Server container images, as noted earlier, you just get
core SQL Server functionality today in the provided container images. Some of the
features, such as Always On Availability Groups (AGs), cannot be added by customizing
the image.

Availability for SQL Server containers
For any production environment, ensuring availability is an important aspect of any
architecture. Traditional availability solutions for SQL Server use an underlying cluster
(Windows Server Failover Cluster (WSFC) or Pacemaker on Linux). For containers, load
balancing, clustering, orchestration, and more are provided by K8s. Examples of K8s are
Azure Kubernetes Service (AKS) and Red Hat's OpenShift.

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-environment-variables?view=sql-server-2019
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-environment-variables?view=sql-server-2019
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-environment-variables?view=sql-server-2019
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage

Availability for SQL Server containers | 181

Kubernetes clusters have nodes, which are the servers that the containers will run
on. These nodes can be physical servers or VMs running on-premises or in the public
cloud. A container is deployed in a K8s cluster into a pod, which is a wrapper that allows
them to be deployed on a node. A pod can represent one or more containers in a logical
group. Storage is presented using persistent volumes (https://kubernetes.io/docs/
concepts/storage/persistent-volumes/), which are slightly different than volumes in
Docker. There are two concepts: the disk, or persistent volume, and a claim, which is
the actual request for disk I/O.

As of Kubernetes 1.14, along with Windows Server 2019, Windows Server and Linux
servers can participate in the same Kubernetes cluster. Windows Server 2019 allows
a Linux-based container to run under it. Kubernetes 1.9 introduced beta support for
Windows Server containers, which opens the door to running Windows-based .NET
applications and down the road, possibly SQL Server in Windows Server 2019-based
containers. There were Windows-based containers from Microsoft for SQL Server 2017,
but only SQL Server Express was supported.

With Windows Server 2019, a Kubernetes cluster can span both Windows Server and
Linux nodes. A Windows Server node can run a Linux container, and a Linux node can
run a Windows Server container if it is at 1.14. An example of what that may look like is
shown in Figure 6.11:

Figure 6.11: Kubernetes cluster spanning OSes

When they were first introduced in SQL Server 2017, containers could be deployed in a
way similar to that of an Always On Failover Cluster Instance (FCI). In a traditional FCI,
the instance of SQL Server can be hosted by the properly configured nodes of a WSFC
or Pacemaker cluster.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

182 | SQL Server 2019 in Containers and Kubernetes

Pods under Kubernetes can work in a similar fashion using storage that is persistent.
As shown in Figure 6.12, a node of the Kubernetes cluster failed, and SQL Server was
rehosted on another node in another pod:

Figure 6.12: High availability for a single deployment with Kubernetes

Note

For more information and instructions on how to configure availability using
this method, see https://docs.microsoft.com/en-us/sql/linux/tutorial-sql-server-
containers-kubernetes?view=sql-server-2019.

https://docs.microsoft.com/en-us/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-2019
https://docs.microsoft.com/en-us/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-2019

Traditional analytical systems provide intelligence and insight for organizations by
integrating disparate sources into a single system, moving and isolating the analytical
workload from the operational workload. In this chapter, you are going to learn about a
different approach to data integration—data virtualization. You will start by immersing
yourself in the challenges faced when performing data integration projects so that you
can differentiate data virtualization use cases from more established data movement
patterns. Once you have understood the kinds of problems you can solve with this
approach, you will then explore the underlying technology in SQL Server 2019 before
being walked through a concrete, end-to-end solution in Azure.

Data Virtualization

7

186 | Data Virtualization

Data integration challenges
The traditional approach taken with traditional analytical systems has typically
leveraged data integration tools to build pipelines that extract source system data,
transform it, cleanse it, and finally load it into a data mart or data warehouse.

This data integration approach, also known as "schema on write," can lead to long
development lead times as the target data model has to be defined before the data
movement pipeline can be completed. Meanwhile, the physical act of copying data
both multiplies storage costs, courtesy of data duplication, and introduces the
challenge of data latency to the data movement pipeline. Furthermore, data movement
and duplication increase the data management burden when meeting security and
compliance requirements as multiple versions of the same data now exist.

This "data movement" pattern is also intrinsic to modern big data architectures. While
some data integration velocity challenges have been addressed via "schema-on-read"
approaches, data management challenges remain. Data still ends up being duplicated
from operational systems and can require further copies as the data is consolidated,
transposed, and reformatted into analytical file formats such as Parquet. Data quality
issues are also not magically solved by data lakes either. If the source data is poor or
incomplete, then this will still need to be addressed. Furthermore, with the advent of
self-service data wrangling you can easily end up with multiple versions of the same
data all applying slightly different data quality measures. If left unchecked, self-service
empowerment can lead to significant waste of resources, quickly reducing the data lake
(a good thing) into a data swamp (a bad thing).

Data lake architectures also introduce new challenges to organizations. It can be tough
for analysts to easily query file-based data using existing tools and technology. Big
data tools, such as Apache Spark, can be used to issue SQL queries, but these compute
engines lack the ability to efficiently process complex set-based queries featuring many
joins, for example. This is compounded when we add requirements for granular security
control and auditing, or scaling the system to address the concurrency needs of an
organization. In these scenarios, relational database technology still outshines its big
data counterparts.

So, what should you do?

Learn how data virtualization helps you address these challenges, of course!

Introducing data virtualization
Data virtualization is the name given to any approach that enables you to query across
disparate systems from a single source without having to know where that data
physically resides.

Introducing data virtualization | 187

Queries can be executed against a wide variety of relational and non-relational datasets,
some of which may have their own compute engines, while others may not. When a
remote compute engine exists, data virtualization technology enables you to push down
computation to that data source. Advanced data virtualization engines also provide
additional transparent caching of data to reduce the impact on the source system.
These capabilities achieve a number of important benefits, which are summarized here
for you:

•	 Consolidate query processing at the source, reducing spend on resources.

•	 Manage a single, semantic, and logical view of your data, avoiding duplication.

•	 Address data issues at the source, improving data quality.

•	 Query disparate data in real time without building a data pipeline, maximizing
freshness.

•	 Access data using the source system security model, simplifying management.

•	 Joins and filters can be pushed down to the source, improving query
performance.

•	 Only query results travel securely over the network, enhancing network
efficiency.

•	 Transparently cache data, reducing the impact on source systems.

By federating queries across disparate data from a single source, data virtualization
empowers you to build a modern enterprise data hub for all of these systems without
having to build complex pipelines:

Figure 7.1: A modern enterprise data hub

188 | Data Virtualization

Data virtualization use cases
In this section, you will review three specific scenarios where a modern enterprise data
hub implemented using data virtualization technology adds significant value to your
solution.

Data virtualization and hybrid transactional analytical processing

One approach that has gained popularity in recent times is operational analytics, also
known as hybrid transactional analytical processing (HTAP). With this approach, you
blend the operational workload and the analytical workload into a single system for
that dataset. This has the advantage of consolidation and can limit data duplication. It
also addresses data quality issues at the source, which leads to a reduction in the data
management burden. However, there is a notable downside. Most enterprises have
multiple-source systems, which would result in multiple HTAP systems. This introduces
the challenge to users of querying across all their analytical data.

Enter your modern enterprise data hub. Data virtualization enables you to build a single
semantic layer over these HTAP systems. You can take advantage of the enhanced data
quality and analytical compute power in each source. This means you can query data in
real time for maximum freshness and push down computation for resource efficiency.

Data virtualization and caching

Think about a popular dashboard in your organization. Every time it is accessed, the
same requests are made of the data source. This pattern is very common in analytics.
The same queries, and often the same data, is accessed over and over again—often
producing the same result. Data virtualization technology can help offset this overhead
by implementing various caching techniques.

Note

Refer to Chapter 9, SQL Server 2019 Big Data Clusters for more information on SQL
Server 2019's new file caching technology—HDFS tiering.

Data virtualization and federated systems

Data warehouses and analytical platforms have often espoused the "single view of the
truth" architecture. However, it is not always practical to achieve. Some organizations
are spread all over the world, operating over multiple time zones and making data
movement challenging. Others operate in a subsidiary model with many different
business units contributing to the group's success. These business units may have
grown organically but it's just as likely that the company has grown through acquisition.

Contrasting data virtualization and data movement | 189

It is not uncommon to see different technologies being used for analytics in these types
of organizational models. As a result, these companies often choose a federated model
for their analytics platform.

In a federated model, each unit of the business is empowered to build their own
analytical solutions. In cases where the federation is geographic, the KPIs might be
the same. However, that does not mean that the technology used is identical. When
the federated model is split by business unit, the KPIs are likely different to reflect the
needs of each business. However, that does not help the board get a single view of all
KPIs. In both cases, the group organization still needs an easy way to understand the
health of the company across the business units.

As data virtualization abstracts the technology away from the semantic view, your
modern enterprise data hub provides a unified layer for analytical queries across all
your data. Data virtualization provides a way for you to logically bring metrics and
measures together in the modern enterprise data hub irrespective of the underlying
technology.

Data virtualization and data lakes

Data lakes have gained significant traction in recent years for building analytical
solutions. However, these systems are naturally file-based and files aren't always the
easiest of things to query. Optimized Row Columnar (ORC) and Parquet, in particular,
can't simply be opened, inspected, and queried, especially when those files have been
compressed. Direct access to the files also introduces security questions. Should an
analyst have access to all the rows and columns in this file? Possibly not.

Data virtualization technology enables you to put an abstraction layer between the files
and the data analysts looking to query the data. This means that analysts are presented
with a solution that they understand very well, namely SQL and tables. Security can also
be managed on behalf of data analysts, ensuring that end users only see the data they
should. Finally, advanced data virtualization technology providers take advantage of
database engine query processing, which provides analysts with the ability to execute
much more complex queries against underlying file-based data.

Contrasting data virtualization and data movement
While data virtualization is a great solution for several scenarios, there are some cases
where a data movement pipeline is preferred. Data virtualization interrogates the
data source at query time, so you see the latest, freshest state of the data. However,
your queries are limited to data available at query time and you are dependent upon
the source system for row versioning. What should you do when you need to perform
historic analysis over time? When a data source doesn't support historic states of the
data, you need to curate this data using a data movement approach.

190 | Data Virtualization

Even when the data is available, data virtualization provides a more limited set of data
transformation capabilities compared to a data movement strategy. While you can
implement some rudimentary data quality rules in your query, if the data itself requires
significant cleansing or transformation, then a data movement approach offers ultimate
flexibility for data curation.

Analytical queries may also need to be able to determine the state of the data at any
given point in time and not just provide the most recent status. You may have built
a data warehouse in the past for this purpose. Data warehouses incorporate curated
data and embrace a data movement strategy to build slowly changing dimensions and
fact tables that version the data under management. You could, of course, change the
source system to be able to provide this level of data and curation. However, this isn't
always practical, and so a data movement strategy tends to be preferred in these cases.

Does a data movement strategy mean you cannot use data virtualization? The answer
is no.

Data virtualization can be used by data warehouses to prototype a new pipeline or
integrate with a central reference catalog. Alternatively, if you are building an enterprise
data hub, you could move data inside the hub using your data virtualization platform
and then curate that data to provide the insight you require. This approach enables
you to build conformed dimensions, for example, in the data hub. This allows them to
be easily re-used as part of the data virtualization solution without needing a separate
system.

In short, data virtualization and data movement can be complementary technologies.

Data virtualization in SQL Server 2019
The technology SQL Server uses to deliver data virtualization capabilities in 2019
is PolyBase. PolyBase was first introduced into SQL Server in the 2016 release to
help customers integrate their Hadoop clusters with relational data. SQL Server
2019 significantly extends PolyBase and enhances these capabilities to bring data
virtualization capabilities to the platform.

In this chapter, you will focus on the latest innovations in PolyBase so you can create a
modern enterprise data hub in your organization.

Secure data access
PolyBase uses the security model of the underlying data source to access data. As you
will only be reading data, the permissions required on the data source are limited to
SELECT or read-only access. However, the credentials used to read the data are stored
inside your data hub so you will need to know how to create and secure them. In this
section, you will learn how to do this.

Secure data access | 191

The database master key

The master key is created inside the SQL Server database you are using to act as
the data hub. It is then used to secure the private keys created by database scoped
credentials. You can only have one master key in a database. An example of the syntax to
create a database master key is shown here:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '@rsen@l@re@m@zing!'

;

If you are using the data hub for other purposes, it is quite possible that you have
already created a master key as other product features can require one. If you have,
that's great; you can re-use it for securing database scoped credentials for data
virtualization. You can check to see whether your data hub has a master key by using
the following query:

SELECT * from sys.symmetric_keys

;

Database scoped credentials

Database scoped credentials are user-created objects that exist inside the database you
are using as the data hub. They contain the identity and the secret required to access
an external data source. You only need to create one database scoped credential per
external data source. However, you can create more than one if you want to access the
external data source using a different credential. You will also need to create a second
external data source object, however, to use the second database scoped credential.

Database scoped credentials provide the abstraction to the security model used to
access the data source. SQL Server 2019 supports the following security models when
using PolyBase for data virtualization:

•	 Proxy authentication (username and password)

•	 Kerberos integrated authentication (pass-through authentication)

•	 Storage access key (shared secret)

Note

A proxy account can be a basic login and password combination, such as SQL
authentication for SQL Server, or a more complex configuration such as a Kerberos
identity, which requires additional setup. The key point to note is that whichever
proxy method is used, all access to the external data source is through this
account.

192 | Data Virtualization

Ultimately, it is the external data source that determines which security model can
be used with each data source. Review the compatibility matrix in the Supported data
sources section of this chapter for more information.

Here is an example of the syntax used to provide SQL Server with the security context
for a connection to a PostgreSQL external data source:

CREATE DATABASE SCOPED CREDENTIAL pg_credential  

WITH IDENTITY = 'jrj@jrjpg'

,    SECRET   = '!@rsen@l@re@m@zing!'

;

Note

The identity equates to the username of the external data source. For example,
in the preceding case, the username is defined using the username@servername
convention as this is how the username is defined in PostgreSQL. If you forget
to specify the identity using the correct naming convention of the data source,
you may find you get an error when you try to create an external table as the
credentials will not be validated until that time.

You can validate which database scoped credentials exist in your data hub by querying
the catalog view for database scoped credentials:

SELECT * FROM sys.database_scoped_credentials

;

Once you have your data access set up you can go ahead and create the external data
source.

External data sources
External data sources are your path to virtualizing data from other systems. They
collate the connectivity metadata into a single database object. Each external data
source provides the location, port, credential, and connectivity options required to
access the external source. Just like the other objects discussed, external data sources
are database scoped, residing in the database chosen as the data hub.

External data sources | 193

Supported data sources

The number of external data sources has significantly increased in SQL Server 2019
and now supports many relational database management systems, key-value stores
(non-relational), and big data file formats for querying data that's resident in Hadoop.
The following table summarizes all the external data sources available in SQL Server
2019, highlighting the required security model for that source:

Table 7.2: Table summarizing the external data sources

Note

In the preceding table, SQL Server includes the whole SQL Server family of
databases: SQL Database, SQL managed instance, and SQL Data Warehouse.

Azure Cosmos DB is accessed via the MongoDB API. The data pool and storage
pool are features of SQL Server 2019 Big Data Clusters. For more information, refer
to Chapter 9, SQL Server 2019 Big Data Clusters.

194 | Data Virtualization

Extending your environment using an ODBC external data source

One of the most interesting external data sources in SQL Server 2019 is the Open
Database Connectivity (ODBC) external data source. The ODBC standard provides an
open extensibility model, which dramatically increases the number of external data
sources you can connect to. For example, you can bring your own driver (BYOD) and
connect directly to other Azure SQL Database engines, such as PostgreSQL, MySQL,
and MariaDB. You can even connect to third-party systems such as Salesforce and SAP
Hana.

The following example shows you all the arguments you need when creating an external
data source for an Azure Database for PostgreSQL server.

Azure Database for PostgreSQL currently supports versions 10, 9.6, and 9.5. You need to
know which version you are using as this impacts your driver choice. For PostgreSQL,
you can download the ODBC driver from their website: https://www.postgresql.org/
ftp/odbc/versions/msi/. Generally speaking, you should be using the latest driver for
your version.

To configure the PostgresSQL driver for an Azure instance, you will need the following
information:

Table 7.3: Information required to configure the Postgres driver

https://www.postgresql.org/ftp/odbc/versions/msi/
https://www.postgresql.org/ftp/odbc/versions/msi/

External data sources | 195

Use this information to complete the configuration of the driver. Once complete, you
can test and save the configuration. Here is an example of the configuration screen
prior to saving:

Figure 7.4: Setting up the ODBC driver for PostgreSQL

Note

Remember to leave the SSL Mode field set to require for connectivity with Azure.
If you change this, your communication to the database may fail with the following
error: FATAL: SSL connection is required. Please specify SSL options and retry.

You can now create the external data source using the following syntax below:

CREATE EXTERNAL DATA SOURCE pg_eds  

WITH

(LOCATION           = 'odbc://jrjpg.postgres.database.azure.com:5432'

, CONNECTION_OPTIONS = 'Driver={PostgreSQL ODBC Driver(ANSI)};
sslmode=require'

, CREDENTIAL         = pg_credential

, PUSHDOWN           = ON

)

;

196 | Data Virtualization

The LOCATION argument specifies the communication protocol as well as the server
name and port for connectivity.

The CREDENTIAL argument maps in the database scoped credential you created earlier.
Remember that all queries over this external data source will use this database scoped
credential.

The PUSHDOWN argument can be set to ON or OFF and is optional (the default is ON). This
argument is used to tell PolyBase whether it is permitted to optimize queries by
"pushing down" computation to the external data source. JOINs and GROUP BYs of
external tables that belong to an external data source are good examples of "push
down." By setting PUSHDOWN to OFF, you would disable this optimization.

Finally, you may need to use additional settings when configuring an ODBC data source.
You can use the CONNECTION_OPTIONS argument to tailor your connection to meet the
driver's needs. For this ODBC scenario, you will need to set two values. The first is the
Driver parameter, which states which driver to use. The second parameter is sslmode.
This setting forces the connection over Secure Sockets Layer (SSL), which is a default
requirement for communicating with Azure Database for PostgreSQL.

Once created, you can check the configuration of the external data source by querying
the external data source catalog view:

SELECT * FROM sys.external_data_sources

;

You are now able to create an external table.

Accessing external data sources in Azure

In order for SQL Server to be able to access the external data source, you may need to
allow inbound connections from your data hub to the Azure resource. This will largely
depend on whether the external data source is inside or attached to the same virtual
network as your SQL Server instance. The following screenshot shows the firewall
configuration screen for Azure Database for PostgreSQL. If your external data source
is not letting your SQL Server instance connect to the external data source, you should
navigate to the connection security settings in the Azure Portal and add a rule to let
traffic from SQL Server through. Have a look at this example:

External file formats | 197

Figure 7.5: Azure Database for PostgreSQL firewall screen

Note

The preceding screenshot also highlights the default SSL settings for
communication to PostgreSQL. As you saw earlier, this is important to remember
when configuring the external data source. Communicating over SSL is the best
practice.

External file formats
When you work with files such as CSVs, or even big data files such as ORC or Parquet,
you need to create an external file format to tell SQL Server how to interpret the file.
In the following example, the external file format is configured to interpret a CSV file
using a caret as a field terminator. Other options exist for data compression, string
termination, and file encodings:

CREATE EXTERNAL FILE FORMAT azure_adventureworks_eff  

WITH

(FORMAT_TYPE = DELIMITEDTEXT  

,FORMAT_OPTIONS(FIELD_TERMINATOR = '^')  

);

198 | Data Virtualization

Once created, you can reuse the external file format for all the external tables of that
type. You can also check to see which ones you already have created using the catalog
view:

SELECT * FROM sys.external_file_formats

;

Remember, external file formats are only required when creating an external table over
a file. They are not needed for other relational or non-relational external data sources.

PolyBase external tables
External tables provide SQL Server with the schema to reason over data in the external
data source. When you create an external table, you are establishing a strongly typed
interface to the data that includes data type, nullability, and column-level collation. The
columns can, and should, be strongly typed as this improves query performance and
data quality.

Note

The data that you reference via an external table is not directly under SQL Server
management. This means that the data could change or be removed and will not
be included in operations such as backup or restore.

The columns in an external table are mapped by position and so you can choose
whatever column names you like. You can, therefore, treat external tables as a useful
abstraction for aliasing column names. In this sense, an external table operates as a
view:

CREATE EXTERNAL TABLE [Sales].[SalesTerritory]

([TerritoryID]       INT                NOT NULL

,[Name]              NVARCHAR(50)       NOT NULL

,[CountryRegionCode] NVARCHAR(3)        NOT NULL

,[Group]             NVARCHAR(50)       NOT NULL

,[SalesYTD]          MONEY              NOT NULL

,[SalesLastYear]     MONEY              NOT NULL

,[CostYTD]           MONEY              NOT NULL

PolyBase external tables | 199

,[CostLastYear]      MONEY              NOT NULL

,[rowguid]           UNIQUEIDENTIFIER   NOT NULL

,[ModifiedDate]      DATETIME2(3)       NOT NULL

)

WITH

(DATA_SOURCE     = pg_eds

, LOCATION        = 'postgres.sales.salesterritory'

)

;

Note

The LOCATION value used for the external table is a three-part name:
<database>.<schema>.<table>. The DATA_SOURCE parameter maps the external
data source object to the table. Remember the external data source object
includes the server name so that SQL Server can locate the instance.

You can validate your external tables by using the following command:

SELECT * FROM sys.external_tables

;

You now have the objects you need to execute a query against an external data source.
However, there is one final thing you can do to help the optimizer. You can create
statistics on the columns of the external table to provide the optimizer with additional
heuristics. Use standard CREATE STATISTICS syntax to do this.

200 | Data Virtualization

Creating external tables with Azure Data Studio

Azure Data Studio is a cross-platform client tool for querying your data. It includes
a helpful wizard that you can use for creating external tables in your data hub. To
initiate the wizard, you first need to create a connection to Azure Data Studio. Leave
the database defaulted to master so that you can see all the databases on the instance.
Right-click on your data hub and choose the Create External Table option to initiate
the wizard:

Figure 7.6: Initiate the wizard

The most important step in the create external table wizard is step 4—the table mapping
screen, shown in the following screenshot. Here you can choose which external tables
are generated in your data hub, decide which schema those tables will be created in,
and either accept or adjust the names and type mapping of the source schema to SQL
Server:

PolyBase external tables | 201

Figure 7.7: Azure Data Studio data virtualization wizard

Note

The primary benefit of using the External Table Wizard in Azure Data Studio is that
you can generate many external tables at once.

The external table wizard is available for creating both SQL Server and Oracle external
tables. You can also create external tables overviews as well as tables.

Contrasting linked servers and external tables

Linked servers have been available in SQL Server for a very long time. They provide
users with the ability to connect disparate data sources together and provide a
mechanism for executing queries across instances. At a superficial level, they can feel
similar to PolyBase external tables. However, there are some significant differences that
you should be aware of when choosing which technology to use.

202 | Data Virtualization

External tables have been designed to handle much larger volumes of data and are able
to scale out reads against large data sets. External tables are therefore better suited to
analytics scenarios, such as data virtualization, where this pattern is more common.

Linked servers operate at the instance level, whereas external tables are contained
inside a database and are therefore database scoped. This has some important
benefits. It means that an external table will automatically be included in an Always
On Availability Group and does not require any special configuration. Database
containment is very handy for consolidation and release management as there are no
additional artifacts leaking into the rest of the instance, which would otherwise require
special treatment.

In summary, if you are building a modern enterprise data hub, then you should be
leveraging PolyBase external tables in SQL Server 2019.

Installing PolyBase in SQL Server 2019
PolyBase is an optional component in SQL Server. You must either include it as part of
the initial install or add it after install to be able to use it. You will also need to enable it
once installed.

PolyBase can be installed in one of two modes: standalone mode or as a scale-out
group. In standalone mode, SQL Server operates as both the "head" and a singular
"compute" node. This is a good option when connecting to smaller, relational sources.
When you set up PolyBase as a scale-out group, SQL Server operates as a cluster
with a "head" and multiple "compute" nodes. This provides enhanced scalability and
performance for the solution. Scale-out groups are particularly relevant when querying
very large systems with partitioned tables or a big data system, which may contain
billions of records.

In this section, you will learn about how you install PolyBase in either mode. The steps
to perform this task are different depending on whether you are using Windows, Linux,
or Docker, so each option is covered in the next section.

Note

If you are using a SQL Server 2019 virtual machine from the Azure gallery, then SQL
Server is already installed. However, you will still need to update the installation to
include PolyBase and then enable it.

Installing PolyBase in SQL Server 2019 | 203

General pre-installation guidance

When you install PolyBase on Windows, it is worth deciding whether you also want to
connect to a Hadoop external data source. A Hadoop data source enables connectivity
to distributions from Cloudera or Hortonworks but also includes cloud object stores
such as Azure Blob storage. These external data sources require you to also install a
Java Runtime Environment (JRE) for you to install PolyBase. Fortunately, SQL Server
now ships with its own supported JRE, which will install as part of the installation
process. If you would rather use your own JRE, you can use that instead:

Figure 7.8: The Java Install Location window

Note

Installing a JRE is only required if you want to connect your SQL Server instance to
use Azure Blob storage or a big data system such as Cloudera. You don't have to
do this if you only plan to use relational external data sources. You can also add it
later on if needed.

204 | Data Virtualization

Installing PolyBase on Windows

The SQL Server Installation Center, also known as the installer, is the most
straightforward way to install PolyBase on Windows. You can choose to install PolyBase
as part of the initial install or update an existing deployment and add it on later.

The most critical screen in the installation process is as follows:

Figure 7.9: Select the PolyBase feature during installation

As you can see, the Java connector for Hadoop Distributed File System (HDFS) data
sources is an additional option.

Installing PolyBase in SQL Server 2019 | 205

For more advanced deployments, you can install SQL Server from the command line
and include the switches to also enable PolyBase. An example is provided here:

Setup.exe /Q /ACTION=INSTALL /IACCEPTSQLSERVERLICENSETERMS /
FEATURES=SQLEngine,PolyBase  

/INSTANCENAME=MSSQLSERVER /SQLSYSADMINACCOUNTS="\<fabric-domain>\
Administrator"  

/INSTANCEDIR="C:\Program Files\Microsoft SQL Server" /PBSCALEOUT=TRUE  

/PBPORTRANGE=16450-16460 /SECURITYMODE=SQL /SAPWD="<StrongPassword>"  

/PBENGSVCACCOUNT="<DomainName>\<UserName>" /
PBENGSVCPASSWORD="<StrongPassword>"  

/PBDMSSVCACCOUNT="<DomainName>\<UserName>" /
PBDMSSVCPASSWORD="<StrongPassword>"

Once installed, you can move onto the post-installation steps.

Installing PolyBase on Linux

As of SQL Server 2017, you are able to operate SQL Server on Linux. Today, SQL Server
supports the following distributions:

•	 Red Hat Enterprise Linux (RHEL)

•	 SUSE Linux Enterprise Server (SLES)

•	 Ubuntu

To install SQL Server on Linux, you should follow the guidance given in the product
documentation, as covering the full installation process is out of scope for this chapter.
This is covered in Chapter 5, SQL Server 2019 on Linux.

The following URLs will direct you on how to perform the initial setup for your
preferred distribution:

•	 RHEL: https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat

•	 SLES: https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-
suse

•	 Ubuntu: https://docs.microsoft.com/sql/linux/quickstart-install-connect-
ubuntu

https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-suse
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-suse
https://docs.microsoft.com/sql/linux/quickstart-install-connect-ubuntu
https://docs.microsoft.com/sql/linux/quickstart-install-connect-ubuntu

206 | Data Virtualization

From your terminal, you can update your SQL Server installation using one of the
following commands:

RHEL

sudo yum install -y  mssql-server-polybase

Ubuntu

sudo apt-get install mssql-server-polybase

SLES

sudo zypper install  mssql-server-polybase

Once installed you will be prompted to restart your SQL Server installation. You can do
so with the following command from your terminal window:

RHEL, SLES and Ubuntu all use the same command for restart

sudo systemctl restart mssql-server

That's all there is to it. You can now move onto the post-installation steps.

Installing PolyBase on SQL Server running in Docker

SQL Server 2019 is available for download as a Docker image. However, the image does
not contain optional components such as PolyBase. You will need to build a Docker
image and include the PolyBase package. Fortunately, this is very easy to do using a
Dockerfile.

Firstly, you need to create a Dockerfile to tell Docker what to build. Create a file called
dockerfile in a directory and then navigate to that directory in your cmd window or
terminal. Copy the following code into your Dockerfile:

mssql-server-polybase

Maintainers: Microsoft Corporation

GitRepo: https://github.com/Microsoft/mssql-docker

Base OS layer: Latest Ubuntu LTS

FROM ubuntu:16.04

Install pre-requisites including repo config for SQL server and PolyBase.

Installing PolyBase in SQL Server 2019 | 207

RUN export DEBIAN_FRONTEND=noninteractive && \

    apt-get update && \

    apt-get install -yq apt-transport-https curl && \

    # Get official Microsoft repository configuration

    curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add -
&& \

    curl https://packages.microsoft.com/config/ubuntu/16.04/mssql-server-
preview.list | tee /etc/apt/sources.list.d/mssql-server-preview.list && \

    apt-get update && \

    # Install PolyBase will also install SQL Server via dependency mechanism.

    apt-get install -y mssql-server-polybase && \

    # Cleanup the Dockerfile

    apt-get clean && \

    rm -rf /var/lib/apt/lists

Run SQL Server process

CMD /opt/mssql/bin/sqlservr

You can access a copy of this Dockerfile at the following URL: https://github.com/
microsoft/mssql-docker/tree/master/linux/preview/examples/mssql-polybase.

You are now able to build the image and give it a tag using the following command
below:

docker build . -t mssql-polybase-2019

The build will download all of its dependencies and build a new image that includes SQL
Server and the Docker image. Now all you need to do is create the container, which you
can do with the following docker run command:

docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=@rsenal@re@mazing' -p 1433:1433
-d mssql-polybase-2019

In a matter of seconds, you have a Docker container up and running and you can move
onto the post-installation steps.

https://github.com/microsoft/mssql-docker/tree/master/linux/preview/examples/mssql-polybase
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/examples/mssql-polybase

208 | Data Virtualization

When using SQL Server on Docker, you may find you need to increase the resources
available to Docker to run the containers successfully. SQL Server typically needs at
least 2 GB RAM, for example. When using PolyBase, you will probably want to increase
that amount further as you are going to use memory when querying external data
sources:

Figure 7.10: Docker preferences

Post-installation steps

You should first validate that PolyBase is installed by executing the following command:

SELECT SERVERPROPERTY ('IsPolyBaseInstalled') AS IsPolyBaseInstalled;  

Now that you have validated the installation, you will need to enable PolyBase using the
following command:

exec sp_configure @configname = 'polybase enabled', @configvalue = 1;

RECONFIGURE WITH OVERRIDE;

Note

Knowing that the instance has PolyBase installed and enabled is a great place to
start when troubleshooting a deployment. It is easy to forget to enable PolyBase
after installation, but the feature won't work unless you do so!

Installing PolyBase as a scale-out group | 209

Installing PolyBase as a scale-out group
To enhance the performance and scalability of SQL Server 2019, you can deploy
PolyBase as a scale-out group. In this mode, all instances in the group operate as one
when querying external data sources. Scale-out groups are particularly useful when
querying large partitioned tables or big files out in Hadoop or in Azure Blob storage.
Scale-out groups sub-divide and parallelize query processing across the nodes of the
scale-out group, which takes full advantage of the distributed architecture.

Note

Scale-out groups are supported on the Windows operating system only. If you
want to build a scale-out data virtualization platform on Linux, then use SQL Server
2019 Big Data Clusters, which is optimized for this scenario using Kubernetes. For
more information on SQL Server 2019 Big Data Clusters, refer to Chapter 9, SQL
Server 2019 Big Data Clusters.

Setting up a scale-out group is relatively straightforward, provided you follow
a methodical process. There are some important factors you need to take into
consideration, so having a plan is important for a smooth deployment. The following
diagram summarizes a functional topology you can use for your deployment. You
should also review the additional guidance for implementing this topology to help
ensure you are successful:

Figure 7.11: Azure virtual machine PolyBase scale-out group topology

210 | Data Virtualization

Tip #1: Use different resource groups for each part of the architecture

Using different resource groups for each component in the architecture helps you
manage the assets you create. This way, you can easily remove the scale-out group by
deleting its resource group without destroying the domain controller for example.

Tip #2: Create the virtual network and secure subnets before building virtual

machines

By creating the virtual network first, you can establish the networking and security
topology at the subnet level before you deploy any virtual machines (VMs). You can also
create network security groups (NSGs) and associate your subnet(s) to an NSG. When
you deploy the VMs, you can simply associate each VM to the virtual network and
subnet as you create the machine.

If you create the VMs first, then the networking provisioning blade will try to create the
NSGs at the network interface level. Using NSGs at the network interface level makes
your deployment much more complex as you will have introduced another barrier
that you will need to deal with when trying to get machines to communicate with one
another.

At this point, you can also go ahead and add any inbound rules to the NSG you might
require so that you can configure the VMs. Remote desktop (3389) and SQL traffic (1433)
are the most common ports to open. However, these should be carefully configured,
limiting access from known source IP addresses only.

Tip #3: Place your scale-out group SQL Server instances inside one subnet

All the VMs in a scale-out group communicate over a number of ports. By default,
the port range for PolyBase is 16450-16460. However, scale-out groups also utilize
Microsoft Distributed Transaction Coordinator (MSDTC), which uses a dynamic port
range, making network management more challenging.

Installing PolyBase as a scale-out group | 211

By placing all the scale-out group VMs inside a single subnet, you simplify the topology.
All the VMs can communicate on any port as the network is secured at the subnet level
and you don't need to worry about fixing MSDTC onto a known port.

With this configuration, there is no need for you to create additional inbound rules
in the NSG. The subnet acts as the security boundary for communication between
machines in the scale-out group.

Tip #4: Complete this pre-installation checklist!

Deploying a scale-out group contains a few wrinkles that might catch you out. This
checklist is designed to help smooth out your experience. Review it and make sure you
have an answer for each question:

•	 Have you created DNS names for each of your VMs?

•	 Are all machines in the scale-out group joined to the same domain?

•	 Do you have an extra domain user account to run the PolyBase services?

•	 Is one of the machines licensed with SQL Server 2019 Enterprise Edition?

•	 Have you added client access inbound rules to the NSGs so you can remotely
access the VMs from your machine?

•	 Does the account you are using to install PolyBase have access to SQL Server?

•	 Have you installed any ODBC drivers on all the nodes in your scale-out group?

The last question is particularly important. Scale-out groups need to have the ODBC
driver installed on each node of the scale-out group. If you forget to do this, then you
could get sporadic query failures when the node that does not have the driver installed
is used by a query.

212 | Data Virtualization

Scale-out group installation

The first and most important point is that all nodes in the scale-out group must have
PolyBase installed using the second option, Use this SQL Server as part of PolyBase
scale-out group. It does not matter whether the SQL Server instance you are installing
is going to be the head node or a compute node—make sure you use this option:

Figure 7.12: Enabling scale-out group functionality during the SQL Server installation process

If you do not choose the second option, MSDTC will not be configured correctly and
the additional firewall rules to allow for the network traffic to pass through will not
be enabled. Changing an installation from a standalone instance to a scale-out group
requires you to uninstall the PolyBase feature and reinstall it, which is cumbersome. It is
best to get it right the first time.

Installing PolyBase as a scale-out group | 213

You may need to expand or change the default port range of 16450-16460, depending
on your network administrator rules and guidance. Furthermore, any firewalls that
exist between the machines in this domain will need to let traffic pass over these ports,
otherwise PolyBase will not function correctly.

On the configuration page, you will need to provide the same domain user account for
both PolyBase services. It is important to note that you must use the same domain user
account for both services on all instances. Otherwise, you will not be able to proceed on
this screen:

Figure 7.13: Server configuration—use the same domain user account for both services

214 | Data Virtualization

Before we can move on to configure the scale-out group, you must first complete
the post-installation steps discussed earlier to enable PolyBase. Log in, execute the
following script, and restart all the nodes:

SELECT SERVERPROPERTY ('IsPolyBaseInstalled') AS IsPolyBaseInstalled

;  

exec sp_configure @configname = 'polybase enabled', @configvalue = 1

;

RECONFIGURE WITH OVERRIDE

;

Now that PolyBase is installed and enabled on all the nodes, you are ready to configure
the scale-out group. Choose one SQL Server instance as the head node. In a scale-out
group, the head node must be licensed as Enterprise Edition. Leave this instance alone.
Join the remaining SQL Server instances to the head node using the sp_polybase_join_
group system:

EXEC sp_polybase_join_group

  @head_node_address               = N'jrj-sql19-cp-01.infra.internal'

, @dms_control_channel_port        = 16450  

, @head_node_sql_server_instance_name = N'MSSQLServer'

;

Note

Make sure you use the DNS name that matches the internal network for the
sp_polybase_join_group stored procedure. You want to ensure that the network
traffic stays inside the virtual network. Use the DNS name for the public IP address
when accessing SQL Server from a client.

You can query the following Dynamic Management View (DMV) to validate that the
machine has been incorporated into the scale-out group:

SELECT * FROM sys.dm_exec_compute_nodes

;

That's all there is to it. While there are a number of steps to go through, with a little
planning and forethought you can easily build your own scale-out group. Now that you
have understood all the concepts and installed your own modern enterprise data hub,
you can move on and build your first solution using data virtualization.

Bringing it all together: your first data virtualization query | 215

Bringing it all together: your first data virtualization query
AdventureWorks is a globally distributed business. Each business has implemented
their own HTAP system using the technology of their choice. The architects at
AdventureWorks have done a good job of federating the model across the business
units and so each subsidiary is able to provide the same KPIs. The board of directors
has asked you to build a solution that provide group-level reporting across the business
units:

Figure 7.14: AdventureWorks—a modern enterprise data hub

To implement the preceding architecture, you will need to create the following objects
in your data hub:

•	 Four schemas

•	 One database master key

•	 Four database scoped credentials

•	 One external file format (Europe)

•	 Four external data sources

•	 Eight external tables

216 | Data Virtualization

Using the knowledge you've gained in this chapter, you can create all the objects you
need in your data hub. All that's left to do is create and run the query. For this, you can
use the latest feature in Azure Data Studio—a SQL notebook:

Figure 7.15: Group-level reporting using SQL 2019 data virtualization in an
Azure Data Studio SQL notebook

Bringing it all together: your first data virtualization query | 217

Success! Notice how the end query is "just" SQL? Using familiar tools and technology,
you have been able to query four external sources in real time and provide the latest
state of sales to the board.

We have seen how SQL Server 2019 empowers you to create a modern enterprise data
hub using data virtualization technology powered by PolyBase. You have seen how you
can design your data hub to query across all of your source systems in real time. You
have been through the installation process for Windows, Linux, and Docker, and have
seen how to build a scale-out group in Azure. Finally, you brought everything together
in a single query to provide group-level reporting in your data hub to the board of
AdventureWorks using the latest innovation in Azure Data Studio—a SQL notebook.

If you'd like to try out any of the techniques shown in this book,
get started with a 180-day free trial of SQL Server 2019

https://www.microsoft.com/sql-server/sql-server-downloads

"Data science" is the broader term given to data analysis techniques done in a scientific
manner: create a hypothesis, create a test of the hypothesis, and validate the results
(most often with a peer review). It involves standard data analysis techniques, such as
queries, reports, and data exploration using business intelligence, and goes further by
setting up tests using statistical and algorithmic tools for machine learning.

In this chapter, you'll briefly explore machine learning, the components and
architectures in SQL Server 2019 you can use to implement these services, and a
process you can follow to include them in a solution. You'll learn the new features in
SQL Server 2019 for machine learning platform.

Machine Learning
Services Extensibility

Framework

8

220 | Machine Learning Services Extensibility Framework

You'll start with a quick overview of machine learning, and then move on to working
with the tools to create predictive models and classification. You'll then move on to
installing the feature, and then cover the architecture and components of the system,
which you'll need to have in order to work with the languages you'll use for machine
learning workloads. You'll end this chapter with a complete process to follow to
combine the architecture, components, languages, and environments so as to create a
complete solution.

Machine learning overview
In a moment, you'll cover the installation of SQL Server Machine Learning Services
and get it up and running. You'll also gain an understanding of its components,
configuration, and security, at which point you're ready to get started with your
workloads. But just what is machine learning and where would you use it? Let's examine
the basics.

Within data science, there are three primary branches for prediction and
categorization:

1.	 Machine learning: Using patterns and inferences from data rather than explicit
programming to perform a task

2.	 Artificial intelligence: Applying sensory inputs to learn from data (often using
machine learning techniques)

3.	 Deep learning: Using layers of machine learning methods to create networks that
mimic the human mind's processing of data

Machine learning is the "core" of most of the techniques used in all three branches,
and SQL Server 2019 provides a Machine Learning Services feature so that you can
implement machine learning, artificial intelligence, or even deep learning directly in the
database engine over data stored in a database or combined with external data.

How machine learning works

Machine learning involves ingesting data into a system and applying an algorithm to the
dataset to either predict an outcome or group the data in a meaningful way. There are
two general types of machine learning algorithms:

1.	 Supervised: You have data (called features) that includes the answer you want to
get (called labels)

2.	 Unsupervised: You have data (called features) that does not include the answer
you want to get (unlabeled)

Machine learning overview | 221

For instance, if you wish to predict a certain salary level of a random person, you would
first gather lots of data about lots of people, including their salaries (the label). From the
data, you would select features that highly correlate with the label you want to predict.
You might find that education, experience, location, and so on (the features) are very
useful in predicting how much someone makes in a year. You then take that data, feed
it in through one or more algorithms, and the system "learns" how those features affect
the value of the label. Once it produces a result, you can save that "trained" algorithm
as a machine learning model. Then, using only the features from someone the model
has never seen, the system produces the label you were looking for – this is called a
prediction, or a score, since the prediction usually contains information about how
"sure" the algorithm is of its prediction. This is an example of supervised learning, since
you originally provided the labeled data.

In another example, you may want to group (cluster) people together – perhaps to
find their common spending habits, but you are not sure what makes them similar. In
this case, you provide many features, but no labels, since you're not sure what you're
looking for. The algorithm in this case compares all the features, and tries to minimize
the distance between the points of the datasets. The result is the groupings of data
that show the most similarity between the people. This is an example of unsupervised
learning, since no labels were provided.

Note

The most involved part of this process for either type of learning is gathering
the right data (the most predictive – the features) and cleaning that data so that
the algorithms can process it properly. These tasks make up the job of "data
engineering," which is usually part of the data science team. The "data scientist" is
most often someone who works with the algorithms to create the trained model.

Use cases for machine learning

In his excellent video introduction called Data Science for Beginners, Brandon Rohrer
explains the five types of questions that data science can answer:

1.	 Is this A or B?

2.	 Is this weird?

3.	 How much or how many?

4.	 How is this organized?

5.	 What should I do next?

222 | Machine Learning Services Extensibility Framework

Taking the first question as an example, our salary prediction allows a bank to decide
whether to market a retirement services offering to you, even if they don't know your
salary (you might have more than one bank). In the case of Is this weird?, they can
monitor your spending habits to see whether something is fraudulent in your account.
The How much or how many? question can be used to see whether they should give
you a loan based on how much your salary has increased over the years. How is this
organized? allows the bank to group you with other customers for marketing. And the
What should I do next? answer can automate the fraud response for the bank.

All of these questions have "families" of algorithms that provide answers. If you look
around your organization, you can find your specific use cases within one of these
questions. For instance, assume you do want to find out why some of your store
locations are experiencing a higher level of returns than other stores. You could use
a clustering algorithm (such as k-means) to show the groups of customers returning
products, and what makes them similar.

To find the algorithms that can answer a given problem, visit
https://aka.ms/mlalgorithms.

The general process for creating a machine learning prediction or classification works
like this:

1.	 Select the problem area and the data that supports the answer.

2.	 Ingest and examine the data.

3.	 Select the most predictive columns (features).

4.	 "Train" with the data by passing it through one or more algorithms, using the
features (in supervised learning) and the answers (labels) to create a model.

5.	 "Test" the model by running it against more data that you have the answer for.

6.	 Iterate on the last step by changing the algorithm or the variables the algorithm
uses (called hyperparameters).

7.	 Save the desired model in a binary format so that it can be called to do predictions
or classifications – called "scoring."

8.	 Use the model from software that calls it.

Languages and tools for machine learning

The datasets required to produce reliable predictions and calculations are too large and
complex to calculate by hand. Various programming languages, most notably, R, Python,
and Java are most often used for these calculations.

https://aka.ms/mlalgorithms

Machine learning overview | 223

There are four methods you can use to work with these large datasets in machine
learning using SQL Server 2019:

1.	 The Machine Learning Services extensibility framework: A combination of the
SQL Server Launchpad service, a language server that runs the code, and a stored
procedure that allows the service and the language runtime to interact securely.

2.	 The PREDICT T-SQL command: Runs a trained model you stored in binary format
in the database using either R or Python. Uses the native C++ extensions in SQL
Server.

3.	 The rx_Predict stored procedure: Runs a trained model stored in a binary format
in the database that was created with the Microsoft modeling libraries (more on
that in a bit) and implements the CLR extension – this is language-agnostic and
executes with no dependencies on R or Python runtime engines.

4.	 Spark in SQL Server 2019 Big Data Clusters: Uses the Spark libraries to create,
train, store, and score machine learning models using libraries such as PySpark,
SparkR, or SparkML statements.

Microsoft SQL Server 2016 introduced "R Services for SQL Server" to embed the
capability to send data from an SQL server query to a series of R statements and return
the results. In SQL Server 2017, Microsoft added Python to the server, and renamed the
feature "Machine Learning Services." In SQL Server 2019, Java is also available. In this
chapter, you'll learn how to implement those languages for machine learning, and about
the components within the platform that runs them. There are changes you'll discover
from the previous configurations of R services (2016) and Machine Learning Services
(2019). In this chapter, you'll also focus on the addition of Java, since R and Python
existed in previous versions, but we'll briefly touch on those in case you are new to
them.

Microsoft SQL Server 2019 Machine Learning Services are available for the R and
Python languages in the following editions:

•	 Enterprise (basic and enhanced functions)

•	 Standard (basic and enhanced functions)

•	 Web (basic functions)

•	 Express with Advanced Services (basic functions)

The R language extension is available on the Microsoft Azure database platform for
single databases and elastic pools using the vCore-based purchasing model in the
general-purpose and business-critical service tiers.

224 | Machine Learning Services Extensibility Framework

SQL Server 2019 Machine Learning Services architecture and
components
You can install Machine Learning Services using the SQL Server installer either with a
new instance or by adding features to a currently installed instance. The installer then
marks the base components for each instance to be able to run external language calls
for installation:

Figure 8.1: SQL Server 2019 Machine Learning Services installation

SQL Server 2019 Machine Learning Services architecture and components | 225

After you make the selection, you can pick the languages you want to work with,
and the installer marks further components for that language to be installed. As in
any installation of SQL Server, it's important to understand all of the ramifications
and interactions, which you can find here: https://docs.microsoft.com/en-us/
sql/advanced-analytics/install/sql-machine-learning-services-windows-
install?view=sqlallproducts-allversions.

The Linux installation is different – you'll install a series of packages in a given order,
and there are slight variations depending on your Linux distribution. It's best to consult
the full installation instructions here: https://docs.microsoft.com/en-us/sql/linux/
sql-server-linux-setup-machine-learning?view=sqlallproducts-allversions.

Note that while the Java language is now supported in SQL Server 2019, it is not
included in Machine Learning Services. You will need to install Oracle Java SE or Zulu
OpenJDK Java on your server. If it's not there and you select it (or call for it from the
Linux installer), the prerequisites will fail and you'll exit the installer. Once you install
your Java and set a JRE-HOME system setting (SET in Windows, export in Linux), then you
can restart the installer and select it again.

In Linux, there's a different process to install Java support. Using your distribution's
package manager (such as apt or yum), you'll install the mssql-server-extensibility-
java package once your base installation of SQL Server 2019 and Java is complete, as
described in the full documentation.

You can see a full explanation for the installation process for Java for both Windows
and Linux here: https://docs.microsoft.com/en-us/sql/advanced-analytics/java/
extension-java?view=sqlallproducts-allversions.

Note

SQL Server will only call languages that have been coded to work with this
architecture, called a trusted launcher. In SQL Server 2019, these languages are
R, Python, and Java.

https://docs.microsoft.com/en-us/sql/advanced-analytics/install/sql-machine-learning-services-windows-install?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/advanced-analytics/install/sql-machine-learning-services-windows-install?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/advanced-analytics/install/sql-machine-learning-services-windows-install?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sqlallproduc
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sqlallproduc
https://docs.microsoft.com/en-us/sql/advanced-analytics/java/extension-java?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/advanced-analytics/java/extension-java?view=sqlallproducts-allversions

226 | Machine Learning Services Extensibility Framework

Working together, several components allow the calls to work quickly and securely
across the instance. Each component area gets a process space to protect the integrity
of the databases and processing engines. Along with other components, this makes up
the Machine Learning Services extensibility framework.

Note

The Java language extension runs differently than the chart of processes shown
in the next figure. It uses the LaunchPad (in Windows) or mssql-launchpad
(in Linux) service, but then invokes commonlauncher.dll (in Windows) or
commonlauncher.so (in Linux). For more details on Java interaction, visit: https://
docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-
framework?view=sqlallproducts-allversions.

Components

The following diagram illustrates the primary components in the Machine Learning
Services extensibility framework, and shows the path of a call to the sp_execute_
external_script stored procedure that starts the process:

https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-framework?view=sqlal
https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-framework?view=sqlal
https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-framework?view=sqlal

SQL Server 2019 Machine Learning Services architecture and components | 227

Figure 8.2: SQL Server 2019 Machine Learning Services extensibility framework

228 | Machine Learning Services Extensibility Framework

These are the primary components in the order they are used:

Figure 8.3: Table mentioning the primary components

As regards the calls to the server, standard SQL Server communications such as TCP/IP,
the Tabular Data Stream (TDS), and Encryption still apply.

Note

Failover clustering for Machine Learning Services is now enabled in SQL Server
2019 if the Launchpad service is up and running on all nodes.

Configuration

After Machine Learning Services and any languages you want to work with are installed,
you can enable Machine Learning Services for the instance using Transact-SQL (T-SQL)
with these commands:

EXEC sp_configure 'external scripts enabled', 1

GO

RECONFIGURE WITH OVERRIDE.

GO

SQL Server 2019 Machine Learning Services architecture and components | 229

You can test to see whether the implementation was successful with this script for R:

/* Test R */

EXEC sp_execute_external_script @language =N'R',

@script=N'

OutputDataSet <- InputDataSet;

',

@input_data_1 =N'SELECT 1 AS [Is R Working]'

WITH RESULT SETS (([Is R Working] int not null));

GO

And this one for Python:

/* Test Python */

EXEC sp_execute_external_script @language =N'Python',

@script=N'

OutputDataSet = InputDataSet;

',

@input_data_1 =N'SELECT 1 AS [Is Python Working]'

WITH RESULT SETS (([Is Python Working] int not null));

GO

If those return a value of 1, you're ready to use the Machine Learning Services
extensibility framework for your machine learning workloads.

Note

If the system fails to run the scripts successfully, stop and start the instance again,
and ensure that the SQL Server Launchpad service is running on your system.

230 | Machine Learning Services Extensibility Framework

Machine learning using the Machine Learning Services
extensibility framework
The machine learning services extensibility framework is an architecture that allows
a language processing environment (such as the R, Python, or Java runtimes) to run
alongside the SQL Server engine. Using a service, the language runtime can then
accept, process, and pass back data to and from SQL Server securely and quickly. We'll
examine the complete Machine Learning Services extensibility framework architecture
once you have learned more about working with the languages.

Python, R, and Java all use the Machine Learning Services extensibility framework to
run machine learning code. The following sections will provide an overview of how that
process works from the development process, starting with R.

Note

You can use two general methods to code machine learning systems in SQL Server:
Writing the code in-database; or creating Python and R code locally and processing
the calls on the database using functions in the Microsoft machine learning
libraries in R or Python. This chapter focuses on the former. To learn more about
the remote processing feature, refer to: https://docs.microsoft.com/en-us/sql/
advanced-analytics/r/ref-r-sqlrutils?view=sql-server-ver15.

R for machine learning in SQL Server 2019

SQL Server 2019 uses the Microsoft R enhanced distribution of the R open source
distribution. Microsoft improved the base R language by replacing certain lower-
level libraries for processing data and calculations, adding in multiple functions and
extended packages, and removing the in-memory limitation of R by enabling a file-read
format for data structures, among a host of other improvements.

Note

Microsoft R was originally written by a company called Revolution Analytics (Revo-R),
and you'll still notice vestiges of the product names in the libraries and function
calls in Microsoft R that start with rx_ and revo.

https://docs.microsoft.com/en-us/sql/advanced-analytics/r/ref-r-sqlrutils?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/ref-r-sqlrutils?view=sql-server-ver15

Machine learning using the Machine Learning Services extensibility framework | 231

While R is a general-purpose data processing language, packages and libraries (more on
those in a moment) make it a primary language for machine learning.

In SQL Server 2019, you run R code by:

1.	 Writing and testing your R code.

2.	 Using the sp_execute_external_script stored procedure, wrapping the R code
with data you send in from SQL Server, and defining a structure for the data you
receive from R.

The syntax to run R code takes the following basic format (refer to the official
documentation for more parameters):

sp_execute_external_script

@language = N'R',

@input_data_1 = 'SQL_Code_Goes_Here'

@input_data_1_name = 'Name you'll use in R for the T-SQL data'

@script = N'R_Code_Goes_Here'

@output_data_1_name = N'output data name'

 WITH RESULT SETS ((column_name data_type));

Let's break this down a bit. Here are the parts of the statement:

•	 sp_execute_external_script: The stored procedure that calls the processes that
allow R (and other languages) to run. You'll learn more about the architecture of
this process in a moment.

•	 @language = N'R': Sets the language that the external process uses, in this case, R.

•	 @input_data_1 = ' ': Your T-SQL script for what you want to send to the R
program goes here. You can span lines, but it needs to be within the tick marks.

•	 @input_data_1_name = ' ': The name of the "variable" that R will use as the input
data from SQL Server.

•	 @script = N' ': Your R program text goes here. You can span lines, but it needs
to be enclosed within the tick marks. It's passed as a VARCHAR(MAX) data type. Note
that within the R script, you can use input_data_1 as an R data frame, filled out by
your T-SQL script.

232 | Machine Learning Services Extensibility Framework

•	 @output_data_1_name = N'output data name': This is the name of the variable in the
R script that is returned to T-SQL, which you can use to further process or simply
display to the caller.

•	 WITH RESULT SETS ((column_name data_type)): When the results come from the
R script back to SQL Server, there are no implied headers. It's best practice to
declare the columns that are returned and the SQL Server data types you want.

Note

Of particular importance in the statistical functions used in machine learning are
the differences between R data types and SQL Server data types. R supports about
9 basic data types, while SQL Server supports over 30. It's important to test each
statement you run to ensure you declare explicit conversions appropriately.

Here's a quick example of this call. Using the AdventureWorks database, this calculates
the sum of purchase orders:

USE AdventureWorks;

GO

EXEC sp_execute_external_script

@language = N'R'

, @input_data_1 = N'SELECT LineTotal FROM Purchasing.PurchaseOrderDetail'

, @input_data_1_name = N'lineitems'

, @script = N'sumlineitems <- as.data.frame(sum(lineitems))'

, @output_data_1_name = N'sumlineitems'

 WITH RESULT SETS ((sumlineitems int));

GO

Python for machine learning in SQL Server 2019

The Python language and processing platform is open source software that is widely
used for machine learning, artificial intelligence, and deep learning. It is a general-
purpose, object-oriented language that is highly extensible, and is fast becoming a very
popular language for machine learning. There are two primary versions of Python: 2.x
and 3.x. Most modern implantations of Python are 3.x, and that's what SQL Server uses.

Java and machine learning in SQL Server | 233

SQL Server 2019 Machine Learning Services installs the open source distribution of
Python 3.x, and also allows you to use the rx_ libraries to enhance the performance,
parallelism, and scale of the language.

Using the Python language in SQL Server 2019 Machine Learning Services works the
same as in R – you use the external stored procedure, provide the language name
("Python," in this case) and then send in the data from SQL Server, work with the data in
Python, and return the result set. The syntax looks the same as the examples for R that
you saw earlier – with one important distinction: Python is very sensitive to spacing. In
the Python script you paste in, make sure the spacing is maintained from your original
script.

The data types supported by Python are different than those in R (and SQL Server), so
you should be aware of how it will be converted in the results. But the largest difference
is that Python is highly sensitive to spacing and tabs – so, in the script declaration, you
will need to be extremely careful in how the string is entered.

Note

You should always implicitly declare your data types as you work with various
languages, especially since data science involves statistical formulas, and even a
small difference in data types can completely throw off a calculation – and you
don't always get a warning that the data is unreliable. Make sure you CAST or
CONVERT the data into exactly what each language understands as you pass the
data back and forth.

Java and machine learning in SQL Server
The Java language and processing platform is a cross-platform, sandboxed, general-
use, object-oriented programming language. SQL Server 2019 introduces the Java
environment to the external libraries you have available to your code.

234 | Machine Learning Services Extensibility Framework

Although Java isn't commonly associated with machine learning the way R and Python
are, it is used in many big data processing systems and for general processing tasks.
That isn't to say it's not used at all in machine learning; in fact, there are several libraries
you can load for machine learning in Java. It is, however, well-suited for certain data
processing tasks, such as extracting n-grams for natural language processing, calling
out to a blockchain tag for inclusion in the machine learning process, and so on.

Note

The intention in SQL Server 2019 Machine Learning Services is that you have
several processing languages to choose from based on the task you need to
perform. You might process much of the data using T-SQL, further process the
data in R, extract or transform data in Java, and pass the results to a deep learning
library in Python, all while using SQL Server in a secure way.

For those not familiar with Java, some of the terms used in the Java environment can
be confusing. To run Java programs, you need a Java Virtual Machine (JVM) – the
abstraction layer that sandboxes the program from the rest of the operating system.
Along with the JVM, you need the class libraries in your code. Those are combined into
the Java Runtime Environment (JRE). Java developers also have compilers, debuggers,
documentation tools, and more, and these are provided in a Java Development Kit
(JDK):

Figure 8.4: The Java programming environment

Java and machine learning in SQL Server | 235

For SQL Server 2019 Machine Learning Services, you only need to install a JRE (version
8). If you do not already have a JRE installed on your system, you'll need to install it first
– it isn't installed with the SQL Server installer the way R and Python are.

Note

While you do not need a full Java SDK to run Java code in SQL Server, you do need
it in order to write, compile, and package Java code on your developer workstation.
This section assumes that you are familiar with Java code development.

The Java code you write is compiled to bytecode and combined with other assets in
an archive file (.jar) for use with JRE. That process means it works differently than R
or Python in SQL Server 2019. In R and Python, you run code by simply wrapping it in
a stored procedure. Since Java is compiled and run in JRE, the process has additional
steps.

First, create a folder on the SQL Server system where you will store your compiled Java
code as .jar files. This should be a secure location, since it allows code to run on your
SQL Server.

The next step is slightly different for Linux and Windows, but, in general, you need to
grant the Windows or Linux process that runs SQL Server 2019 extension permissions
for the directory where your .jar files are stored.

While you can grant (in Windows, the SQLRUsergroup group, and, in Linux, the mssql_
satellite:mssql_satellite user) permissions manually, it's better to install the
Microsoft Java Extensibility SDK for Microsoft SQL Server, which downloads the mssql-
java-lang-extension.jar file. (Search for this installer on the web, or check the SQL
Server 2019 official documentation for the latest location.)

Place the .jar file it downloads in the directory you created a moment ago. This allows
calls from your Java code back into the calling SQL Server program. It provides a
handler class for the input and output data, dealing with certain data types, and handles
the security setup for your .jar directory.

Next, you need to set an environment variable (SET with Windows, export with Linux)
called JRE_HOME for the location of the JVM on your system. Make sure this is set
permanently, either in the control panel in Windows or in the environment settings in
your Linux distribution.

236 | Machine Learning Services Extensibility Framework

With these steps completed, the SQL Server instance is set up and you're ready to get
started. Here's the complete process for using Java in SQL Server 2019:

1.	 Write your Java code as a .class file and save it in the folder where you granted
SQL Server permissions. You'll need to include at least these lines:

import com.microsoft.sqlserver.javalangextension.PrimitiveDataset;
import com.microsoft.sqlserver.javalangextension.
AbstractSqlServerExtensionExecutor;

And if you are dealing with data coming in, you'll most probably require these lines
as well:

import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.ListIterator;

Now, you can use the SQL Server Java extensions like so:

public class sumlines extends AbstractSqlServerExtensionExecutor {

And then begin to create your classes. Your input dataset and any parameters take
this form:

public PrimitiveDataset execute(PrimitiveDataset input,
LinkedHashMap<String, Object> params) {
 // Validate the input parameters and input column schema
 validateInput(input, params);

Note

If this seems a bit complex, the documentation for the Java extensions in SQL
Server 2019 has a lengthy example involving the use of RegEx (Regular
Expressions) in Java that you can walk through. Java developers will be familiar
with these code snippets – as a data professional, you will most often simply get
the .jar file directly from the developer.

2.	 Compile the class into a .jar file (for example, jar -cf sumlineitems.jar
sumlineitems.class).

Machine learning using the PREDICT T-SQL command | 237

3.	 Set a parameter for SQL Server to find the libraries. You have two options: you
can use a system environment variable called CLASSPATH that has the location of
your .jar files, or you may use the following code to set where the .jar files are
located. The latter is the preferred method. Here's an example:

CREATE EXTERNAL LIBRARY sumlineitemsJar
FROM (CONTENT = 'c:\javajars\')
WITH (LANGUAGE = 'Java');
GO

4.	 Use the sp_execute_external_script stored procedure to send in data, run the
class, and then receive the results. In this example, you have a .jar file you
compiled, and that Java file has a class that sums the lines of the data sent to it,
just the same as in the R and Python examples:

EXEC sp_execute_external_script
 @language = N'Java'
, @script = N'package.sumlines'
, @input_data_1 = N'SELECT CONVERT(LineTotal to INT) FROM Purchasing.
PurchaseOrderDetail'
, @params = N''
with result sets ((sumlines int));

As you can see, working with Java in SQL Server is a bit more complex than using the
R and Python extensions, but the power and flexibility of the Java language provides
benefits to the shop that has standardized on Java development. This allows the entire
data processing system to exist within a single platform and security boundary.

Machine learning using the PREDICT T-SQL command
Once you have created a model (also called a "trained model"), you can save it in a
binary format for "scoring" the results of a prediction. Both R and Python have methods
to store the trained models as binary outputs. It's common to store these models in
the database itself, which then allows you to process requests from clients in a T-SQL
statement and return the results as a dataset. This process requires the runtime (R or
Python) to process the request.

238 | Machine Learning Services Extensibility Framework

As an example, if you were to create the k-means clustering solution around the
customer returns mentioned earlier, you could save that model as a binary object,
perhaps even from another server that holds the customer data. You could then deploy
that model to a server located at each store and run it using the PREDICT statement to
alert the salespeople to the behavior that might lead to a return, thereby preventing
customer dissatisfaction.

Functions from RevoScaleR (for R) and revoscalepy (for Python) have C++
implementations, and SQL Server 2019 can use models they create (using the
rxSerialize for R, and rx_serialize_model for Python, functions) even without R or
Python being present on the server. These C++ implementations have various prediction
algorithms, including logistic regression and decision trees, and are optimized for fast
processing.

Note

Using the PREDICT command is also called Native Scoring.

The process to use the PREDICT command is as follows:

1.	 Create a table with a binary column to store the trained model.

2.	 Create a prediction model using the algorithms supported by native scoring.

3.	 Serialize the trained model using either the rxSerialize for R, or rx_serialize_
model for Python, functions.

4.	 Call the model using the SELECT … FROM PREDICT(…) commands. Note that the
models return data in various formats based on what you define, so you need to
have the WITH RESULTS clause to specify the schema of the data returned from the
prediction.

To see a complete example of this process, refer to: https://docs.microsoft.com/en-us/
sql/t-sql/queries/predict-transact-sql?view=sql-server-2017.

A good reference for the algorithms you can use can be found here: https://docs.
microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring?view=sql-server-2
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/how-to-do-realtime-
scoring?view=sql-server-2017017.

https://docs.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring?view=sql-server-2 https:/
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring?view=sql-server-2 https:/
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring?view=sql-server-2 https:/
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring?view=sql-server-2 https:/

Machine learning using the sp_rxPredict stored procedure | 239

Machine learning using the sp_rxPredict stored procedure
Another method you can use for scoring predictions in the database is to use the sp_
rxPredict stored procedure. As you can see in the name, this process involves using the
RevoScaleR or the MicrosoftML functions (a full list of the algorithms in those functions
can be found in the following link).

Note

To use sp_rxPredict, you'll need to enable the common language runtime
(CLR) in SQL Server, but you don't need to install R or Python. You'll also need to
enable real-time scoring by following the instructions here: https://docs.microsoft.
com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15#bkmk_
enableRtScoring.

With the prerequisites completed, you then have to follow this process to score the
predictions in T-SQL:

1.	 Load a trained model into a binary variable.

2.	 Select the data you want to score.

3.	 Call the sp_rxPredict function.

4.	 Receive the results.

Here's a simple example that assumes you have a model stored in the database in a table
called my_models and model name is predict_purchase:

DECLARE @modelname varbinary(max)

SELECT @modelname = [model_name] from [my_models]

WHERE model_name = 'predict_purchase'

AND model_version = 'v1''

EXEC sp_rxPredict

@model = @modelname,

@inputData = N'SELECT * FROM customer_features'

To see a complete example of this process and the functions you can use, visit: https://
docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-
server-ver15.

https://docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15#bkmk
https://docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15#bkmk
https://docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15#bkmk
https://docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/advanced-analytics/real-time-scoring?view=sql-server-ver15

240 | Machine Learning Services Extensibility Framework

Libraries and packages for machine learning
In R, Python, and Java environments, the base language comes with multiple functions,
statements, operators, and calls. But the real power in all of these languages is the
ability to add additional constructs written to extend the language for other purposes –
in this case, machine learning. These constructs are bundled together in packages and
libraries.

These terms can be a bit confusing. In R, a package contains one or more functions,
the help files, and sample data – all grouped as files. An R library is where packages are
stored.

In Python, a package is a collection of modules, which contain functions and other
code.

Since Java is an object-oriented language, libraries contain classes. Since Java is
operating system-independent, it includes the Java Class Library (JCL), which provides
low-level access to calls for things such as file and networking access. These are
most often bundled into a Java archive (.jar) file for easy transport, and loaded with a
CLASSPATH call as you saw in the discussion for using Java in SQL Server.

In all cases, package and library management is of paramount importance. Packages and
libraries affect everything the system can do, from functionality to security. The version
of the language environment and the version of the package or library also impact one
another.

Because you are installing a language server alongside SQL Server, you have all of these
concerns and more, since you are mixing a multi use environment with languages that
are often intended for a single programmer to interact with.

A full course on package and library management is beyond the scope of this book,
but you should know that it is one of the most important areas to understand for the
developer, administrator, and data scientist.

In the R and Python languages, Microsoft includes several packages and libraries for
machine learning. They are stored in the location you select during installation, which is
different for Linux and Windows.

Note

You can find the path of your libraries and packages using standard R, Python, and
Java code, using the sp_execute_external_script stored procedure. You can get
a list of the packages and libraries that are currently installed the same way.

Management | 241

You can install new packages and libraries that you need on SQL Server with various
methods, specific to each language, as an administrator from the command line on your
server. However, the best method for R, Python, and Java with SQL Server 2019 is the
enhanced T-SQL CREATE EXTERNAL LIBRARY command. You'll need to be part of the db_
owner role, and then you simply download the packages or libraries to the appropriate
folder for that language. After that, it's a standard call to the installation process in each
language, since the package or library will be available in the secure location for that
language.

Here's an example of loading an R package with this method:

CREATE EXTERNAL LIBRARY customPackage

FROM (CONTENT = 'C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\
MyPackage.zip') WITH (LANGUAGE = 'R');

GO

Then, you can run the R code to use it:

EXEC sp_execute_external_script

@language =N'R',

@script=N'library(customPackage)'

It's a similar process for Python. You saw an example of the Java process call earlier –
while Java is more involved, the package management associated with this statement is
fairly trivial.

For more information on this command, refer to: https://docs.microsoft.com/en-us/
sql/t-sql/statements/create-external-library-transact-sql?view=sql-server-ver15.

Management
Management of any system involves security, safety, monitoring and performance, and
optimization. In the case of SQL Server Machine Learning Services, the safety portion
(backups, availability, and the like) are part of the database environment. Performance
tuning involves optimizing the T-SQL and language-specific code and calls. That leaves
you with a specific set of processes and tools for security, as well as monitoring and
performance.

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql?view=sql-
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql?view=sql-

242 | Machine Learning Services Extensibility Framework

Security

For the most part, the security for using Machine Learning Services follows the same
model as other SQL Server securables. The person or SQL Server principal calling the
Machine Learning Services extensibility framework functions needs to be a Windows
or SQL Server database user, must have access to the tables or views they are passing
in, the ability to write data out (if they do that with the returned data), and be able to
create stored procedures if they are making new code to run the models.

There are differences in security for the languages themselves. If the user is going
to include packages and libraries for R or Python, in their code, they will need the
appropriate permissions to install these software additions. For a complete discussion
of these changes, refer to: https://docs.microsoft.com/en-us/sql/advanced-analytics/
security/user-permission?view=sql-server-ver15.

One interesting side effect of working with external processes is that the Transparent
Data Encryption (TDE) feature in SQL Server is not supported for Machine Learning
Services, since the processes described previously are isolated from the main SQL
Server process where TDE is maintained.

Monitoring and Performance

After you have installed, configured, and secured your system, it's now time to set up
the monitoring of the system. This section covers the tools and processes you should
add to your current monitoring and tuning process for your SQL Server instances –
sizing, setting up monitoring, logging and reporting, setting a baseline, and so on.

To monitor the processes that make up the Machine Learning Services extensibility
framework, you can use standard Windows or Linux process monitoring tools. Look for
components running as services or daemons shown in the architecture components
diagram earlier in this section to include in your operating system's monitoring tools.

For the SQL Server engine-specific components, the first place to start is with a set
of Microsoft SQL Server Reporting Services reports written in Report Definition
Language (RDL) format specifically for Machine Learning Services. Download the
reports here: https://github.com/Microsoft/sql-server-samples/tree/master/
samples/features/machine-learning-services/ssms-custom-reports, and then follow
the installation instructions for those components. You can find everything in these
reports, from the extended events you can monitor, to a list of the packages and
libraries installed for each language. Most of the reports also include a button for the
T-SQL script used to get this information, so this is the best place to start.

https://docs.microsoft.com/en-us/sql/advanced-analytics/security/user-permission?view=sql-server-ver
https://docs.microsoft.com/en-us/sql/advanced-analytics/security/user-permission?view=sql-server-ver
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/machine-learning-services/ssms-custom-reports
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/machine-learning-services/ssms-custom-reports

Management | 243

After installing the standard reports for Machine Learning Services, you can move on
to using the Dynamic Management Views (DMV's) in SQL Server 2019 included with
Machine Learning Services. These views work similar to other DMVs in SQL Server,
and expose everything from session information to resource usage, and also Machine
Learning Services-specific objects, such as the installed packages and libraries, and
much more. You can find a complete list of these DMVs here: https://docs.microsoft.
com/en-us/sql/advanced-analytics/administration/monitor-sql-server-machine-
learning-services-using-dynamic-management-views?view=sqlallproducts-allversions.

To find detailed information about all parts of Machine Learning Services running on
your SQL Server 2019 instance, you can use SQL Server's Extended Events subsystem.
The complete list of events that you can monitor is here: https://docs.microsoft.com/
en-us/sql/advanced-analytics/r/extended-events-for-sql-server-r-services?view=sql-
server-ver15.

Once you've enabled your monitoring, you can set limits on how Machine Learning
Services in SQL Server 2019 use the CPU, memory, and some of the I/O components on
your instance. You can read a complete discussion on this process here – note that this
feature is available on the Enterprise Edition only: https://docs.microsoft.com/en-us/
sql/advanced-analytics/administration/resource-governance?view=sql-server-ver15.

Tuning the system follows the same process as any other SQL Server production
application. Using the monitoring data you have been collecting, you will size your
server, refactor your code (both T-SQL and the language you are using), scale the
systems out and up, and constantly tune the top waits on the system.

You can read a complete discussion on tuning for model performance and other tasks
at https://docs.microsoft.com/en-us/sql/advanced-analytics/r/managing-and-
monitoring-r-solutions?view=sql-server-ver15.

Now that you have Machine Learning Services installed, configured, and secured, you're
ready to use the tools for monitoring and performance to set a zero-use baseline for
your system. That baseline is used as a comparison to the measurements you record
later to find deltas for the performance of each component.

With an understanding of machine learning, you now have a platform to implement
various languages to work with it. Next, let's pair that with a process that combines
Machine Learning Services with many other features of SQL Server 2019 for a complete
machine learning platform.

https://docs.microsoft.com/en-us/sql/advanced-analytics/administration/monitor-sql-server-machine-learning-services-using-dynamic-management-views?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/advanced-analytics/administration/monitor-sql-server-machine-learning-services-using-dynamic-management-views?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/advanced-analytics/administration/monitor-sql-server-machine-learning-services-using-dynamic-management-views?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/extended-events-for-sql-server-r-services?
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/extended-events-for-sql-server-r-services?
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/extended-events-for-sql-server-r-services?
https://docs.microsoft.com/en-us/sql/advanced-analytics/administration/resource-governance?view=sql-
https://docs.microsoft.com/en-us/sql/advanced-analytics/administration/resource-governance?view=sql-
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/managing-and-monitoring-r-solutions?view=s
https://docs.microsoft.com/en-us/sql/advanced-analytics/r/managing-and-monitoring-r-solutions?view=s

244 | Machine Learning Services Extensibility Framework

Using the team data science process with Machine Learning
Services
You've explored the basics of machine learning, and you understand the languages,
tools, and SQL Server 2019 components you can use to implement it, and now you're
ready to get started on some actual data science. A data science project is different
from traditional software development projects because it involves a single solution
at a time, it is highly dependent on improving the solution once it is deployed, and it
involves more stakeholders in the design and implementation.

In business intelligence, you can build a single cube that can answer many questions.
But in data science, you can't use a k-means algorithm on a prediction that requires
linear regression, and the features and labels needed for each would be entirely
different – each question you want to answer requires a new project. Some will be
small, others will be more involved, but all of them require that you work as a team.

In the earliest days of data science, a data scientist would define a problem area, obtain
and curate a dataset, clean the data, perform statistical modeling, select the appropriate
model, deploy the model for the predictions or classification, and then compare the
results to the "ground truth" of what actually occurred so that the model could be
retrained and improved. Over time, the data scientist became overwhelmed with
multiple projects, spending much of their time in data cleansing, programming, or other
non-algorithmic tasks. The data scientist might not be aware of the location of certain
sets of data, the enterprise security model, the networking infrastructure, or any of
dozens of other project factors.

For these reasons, teams have developed around the data science practice, including
data engineers, data scientists, developers, and business analysts. With this complex
arrangement, you need a formal process to control the project with defined roles and
tasks for each team member, and a way to communicate between each stage of the
project.

Understanding the team data science process

The Team Data Science Process (TDSP – https://aka.ms/tdsp) is an open framework
for managing and controlling data science projects. It provides guidance, assets, and
documentation that you can use to implement your solution. The TDSP also defines the
roles described previously, such as data engineers.

The TDSP is made up of five "phases," each with defined steps. Let's take a look at each
of these and where they map to features and components in SQL Server 2019 with
Machine Learning Services.

https://aka.ms/tdsp

Using the team data science process with Machine Learning Services | 245

Phase 1: Business understanding

The most important part of a data science project, even more than the algorithm,
languages, platform, and every other component, is to ensure you have a clearly defined
problem you want to solve. SQL Server 2019 helps you in this area by ensuring that
the organization has exhausted every other query, report, and business intelligence
function to get the answer they are looking for. Many machine learning projects could
be replaced with a well-designed report or cube.

Machine learning problems involve the "five questions" defined in this chapter. Your
organization should be very clear about what it wants to know, and what it will do when
it finds out. Keep in mind that one prediction equates to one project in data science,
unlike a reporting project that can answer many questions in a single report.

Phase 2: Data acquisition and understanding

With the question defined, you'll need to identify the data sources (internal or external)
that you need to create the features and (optionally) labels that you require to create
the prediction or classification. SQL Server 2019 has components such as master
data services, data quality services, SQL Server integration services, and the database
engine itself to source, move, document, store, and process data sources from multiple
locations. In SQL Server 2019, the Big Data Clusters feature (covered in the next
chapter) allows you to source and store data at tremendous scale.

You can use T-SQL, Reporting Services, R, Python, and Java to explore the data for
pattern analysis, cleansing, and more.

Phase 3: Modeling

Using the PREDICT statement, the sp_rxPredict stored procedure, Python, R, and Java,
you can create, train, and test models, and then store them in the database engine or
elsewhere.

Phase 4: Deployment

With the models stored in the database, you can call a stored procedure to do a single
prediction or classification directly from T-SQL code sent from a client application. You
can also run the stored procedure containing the call against a table of data, storing
the predictions and other data in yet another table for use in reporting, queries, or
automation.

In addition, you can export the models from the database in a binary stream to another
location for another system to use in scoring.

246 | Machine Learning Services Extensibility Framework

Phase 5: Customer acceptance

SQL Server 2019's rich set of reporting and classification features, along with
Continuous Integration and Continuous Deployment (CI/CD) capabilities, allow you
to transition the solution to the maintenance team, and also allows you to store the
"ground truth" of the predictions for model retraining. You can also use Reporting
Services to create outputs of the effectiveness of the models and predictions.

SQL Server 2019 provides everything that you need to create an entire data science
ecostructure for secure architectures (on-premises, cloud, or hybrid) for any project
your organization needs, using multiple languages and libraries to future-proof your
data science environment.

If you would like to work through an entire tutorial involving all of these processes and
tools in a clustering example, refer to: https://aka.ms/sqlserverml.

https://aka.ms/sqlserverml

In Chapter 8, Machine Learning Services Extensibility Framework, you learned about
Machine Learning Services using SQL Server machine learning services. The training
phase of model development requires a lot of data — more examples are better for
the algorithms to "learn" from. However, machine learning isn't the only use case that
requires lots of information: everything from business intelligence to data mining takes
advantage of large sets of data. The SQL Server 2019 Big Data Clusters feature facilitates
working with datasets far larger than a traditional Relational Database Management
System (RDBMS) can usually handle, while incorporating other benefits and features as
well.

Because of the depth of technical information in any scale-out system, this chapter will
focus on the primary concepts of this new feature, while providing concrete examples
of their use. References are provided in each section to assist you in learning more
about each area.

SQL Server 2019 Big
Data Clusters

9

250 | SQL Server 2019 Big Data Clusters

Big data overview
The first magnetic storage devices were, large, bulky, and expensive, and required
massive amounts of power and cooling. They also failed quite often. But, as time has
progressed, the sizes of computing components – especially storage – have shrunk,
and costs have decreased. However, the capabilities, reliability, and power of those
components have increased. This allows us to store much more data, and since we've
had those technologies longer, we've been able to store more data over time.

And what can we do with it all — why keep it? Given a system that processes and
delivers the data quickly enough, there are actually quite a few examples of specific use
cases for large sets of data. The most basic use of big data is to simply query it, using
standard T-SQL or Multidimensional Expressions (MDX).

Applying scale-out architectures to SQL Server
With an understanding of the source of big data, the uses for big data, and the
technology for processing big data, there are changes and enhancements that are
required for SQL Server to work in a scale-out environment. While SQL Server has long
provided a parallel mechanism to scale processing within an instance, it requires new
technologies to work with massive distributed datasets.

To scale out your computing environment, you need multiple computers, or nodes. But,
of course, adding and removing physical computers from the ecostructure is expensive
and time-consuming, not to mention complicated.

"Virtual" computers are a better solution. A technology called a hypervisor uses
software to represent the physical computer's CPU, I/O, memory, and networking
components to an operating system's installer, running an entire computer within
a computer. The operating system installs onto a file that acts as a hard drive,
encapsulating the entire computer in a file.

This solution allows a greater degree of flexibility to create and remove computers, is
much less expensive, and it is faster to move them around. For instance, you can use
a single physical computer to host multiple virtual computers running Hadoop and
quickly and easily turn them off and on.

However, even this level of abstraction has drawbacks. You can only carve up the
physical computer's components so many times before performance suffers. But the
biggest drawback is that you are reinstalling the operating system multiple times, with
all its drivers, patches, libraries to show the screen and work with the mouse, and so on.
You really only want to run Hadoop, or Python, or some other software program, but, in
a virtual PC, you have to carry the cost of the entire operating system.

Applying scale-out architectures to SQL Server | 251

Containers

Containers offer a better solution. A container system does not represent the CPU, I/O,
memory, and networking sub-systems in a PC so that you can install a full operating
system. Instead, it uses a container runtime engine on the current operating system.
"Layers" of binary files run in the container runtime engine, isolated from other
containers and the host operating system.

The advantages of a container system are best illustrated with an example. Assume you
want to run a Python program. To do that, you need a computer, an operating system,
the Python program binary files, any code you want to run, and any assets (graphics
files, database and text files, and so on) that you create and use in the program that is
installed for every version of the application you want to run. In a virtual machine, the
architecture looks like this:

Figure 9.1: Virtual machine architecture

252 | SQL Server 2019 Big Data Clusters

Using a container runtime engine, the architecture looks like this:

Figure 9.2: Container architecture (Docker shown)

The advantages of this architecture are that the system only carries the assets it needs
to run the Python program, and that environment is completely encapsulated – its own
version of Python, your application, and files. If the engine determines it's the same
Python throughout, it only loads that version once. You could redeploy a copy of that
program with a different version of Python or your application, and it would operate
independently.

The other major advantage associated with this system is how a container is created
and deployed. The general process is declarative:

1.	 You create a text file (in Yet-Another-Markup-Language, or YAML, format) that
describes what binaries and files you want in your container.

2.	 You "compose" this file to an image, which is a binary file containing all of those
assets. You can store this image in a public or private repository. You can then run
a pull command to bring the binary image to your system.

3.	 Using a run command, the binary image is loaded into the container runtime
engine (Docker, in our case) and starts up. This environment is now a container.

4.	 Depending on what your program needs to do, you can allow network access in
and out of the container.

Applying scale-out architectures to SQL Server | 253

One of the most popular container platforms is called Docker, and it's the one that is
used in SQL Server big data clusters. There's a complete course you can take online for
Docker here: https://docs.docker.com/get-started/.

While container technology is revolutionary, it leads to a significant issue: how to
manage multiple containers. You want a scale-out architecture for your big data
processing system, and that means lots of containers running the processing –
sometimes dozens, hundreds, or even thousands of containers. This can become
overwhelming to deploy and manage.

Kubernetes

Kubernetes (Greek for a ship's pilot) is an orchestration system for containers. It also
provides enhanced networking and storage systems that allow for a robust cluster
environment. It's best understood by starting with definitions of its components. You
already know the most basic component – the container. To manage the containers you
wish to deploy, Kubernetes involves the following additional components:

Table 9.3: Kubernetes components

https://docs.docker.com/get-started/

254 | SQL Server 2019 Big Data Clusters

Here's a diagram of all those components together:

Figure 9.4: Kubernetes components

A Kubernetes cluster is controlled with a set of YAML files that dictate the layout of the
preceding components. The primary control program for deploying, configuring, and
managing a Kubernetes cluster is called kubectl.

There is, of course, much more to know about Kubernetes – a good place to start is
here: https://kubernetes.io/docs/tutorials/kubernetes-basics/.

SQL Server on Linux

Now that you understand what constitutes big data, the uses of big data, a way to
scale out, compute, and process big data, the containers to hold that processing, and a
clustering mechanism to control the containers, all that is left for SQL Server to scale
this way is the ability to run on these components – most of which run on Linux.

SQL Server's origins are from Unix. The original code base for SQL Server was
licensed from Sybase, but the entire product has been rewritten over time to have
only Microsoft-developed, Microsoft Windows-based components. However, the
architectures you'll learn about in this chapter are largely Linux-based.

https://kubernetes.io/docs/tutorials/kubernetes-basics/

Applying scale-out architectures to SQL Server | 255

You learned a lot about using SQL Server in Linux in an earlier chapter, but, as a review,
to enable Linux-based customers to work with SQL Server, Microsoft implemented the
Platform Abstraction Layer (PAL) to act as a "shim" between the lowest-level calls in
SQL Server and the operating system it runs on. The PAL also allows SQL Server to run
not just on bare-metal installations of Linux, but also on container technologies you
learned about earlier. This also means that the entire system can be deployed using
Kubernetes, as you saw previously.

Note

There are different distributions of Linux, and while the base commands work
the same way in most, the primary difference you'll notice is the package
management. A Linux package manager dictates how you install, upgrade, and
remove software – it's usually a command rather than a graphical process. Check
Chapter 5, SQL Server 2019 on Linux, for more information.

You can learn a lot more about Linux here: https://www.edx.org/course/introduction-
to-linux.

PolyBase

You learned about PolyBase in Chapter 5, Data Virtualization, and the big data cluster
feature takes advantage of this technology for much of its scale. SQL Server can
store and process data in the petabyte range, given proper hardware and planning. A
RDBMS has certain requirements on the consistency model that ensures the safety
and reliability of the data that makes larger sizes more challenging. A Massively
Parallel Processing (MPP) system breaks apart the data and processing in a similar
way to the example discussed a moment ago, but this isn't the way an RDBMS works
natively. However, there are ways to handle larger sets of data within an SQL Server
environment, and SQL Server 2019's big data cluster features implement various
components to work with those large sets of data.

Leveraging the scale-out features in PolyBase is the key to SQL Server 2019's big data
cluster feature. As you learned in Chapter 5, Data Virtualization, PolyBase allows you
to query multiple data sources, and while big data clusters allow those sources, it also
allows you to query Hadoop Distributed File System (HDFS) data directly as you'll see
in a moment. Adding to that ability, the Big Data Cluster's HDFS system can "mount"
other storage (such as S3 and Azure sources), allowing yet another way to virtualize
data. Let's now take a look at how all of this fits together.

https://www.edx.org/course/introduction-to-linux
https://www.edx.org/course/introduction-to-linux

256 | SQL Server 2019 Big Data Clusters

SQL Server 2019 big data cluster components
With an understanding of big data, its processing, architecture, and technologies, and
the ability for SQL Server to use these technologies, it's time to put it all together.

All of the components for SQL Server 2019 big data clusters run on a Kubernetes
cluster, which you've already learned about. Various nodes on the cluster provide the
capabilities you need to run your data workloads, from SQL Server itself, to control
systems, storage, Spark, and HDFS. This increases the number of external data sources
that you can query, scales out your query processing, provides push-down compute to
Parquet and CSV files, and even allows you to mount other storage.

Once again, using a diagram to understand how each part fits together is useful:

Figure 9.5: SQL Server 2019 big data cluster components

Note

You can specify the number of Kubernetes pods/nodes for many of these
components, so the preceding diagram is simply an arbitrary arrangement to
explain how it works. A big data cluster can use one or many nodes in various
arrangements based on how you want to configure it.

Installation and configuration | 257

There's a lot going on in this diagram, so here's a chart of what each component
provides within the big data cluster system:

Table 9.6: Components in the big data cluster system

In a moment, you'll walk through common programming patterns for this architecture,
so keep this section handy for reference as you work through the data paths.

Installation and configuration
Now that you understand the components within the big data cluster, you can plan
your installation. For a comprehensive discussion of your choices, you can find a full
reference for each of these options here: https://docs.microsoft.com/en-us/sql/
big-data-cluster/deploy-get-started?view=sqlallproducts-allversions.

https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-get-started?view=sqlallproducts-allvers
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-get-started?view=sqlallproducts-allvers

258 | SQL Server 2019 Big Data Clusters

Let's now take a brief tour of the major options you have for deploying SQL Server 2019
big data clusters. You'll then examine the primary installation commands and learn
about other options for deployment.

Note

A full description of the planning and installation process is quite lengthy, and
you should take your time and review the installation documentation thoroughly
before implementing the system in production. We'll cover the main installation
and configuration concepts here so that you have an idea of the general process.

Platform options

You have a wide array of possible environments to deploy SQL Server 2019 big data
clusters. These range from using a service from a cloud provider to setting up your own
environment within a secure boundary you establish. Since SQL Server 2019 big data
clusters use Kubernetes, you will need to have a cluster of appropriate size and storage
to run the product, which you'll see for each environment in the following section. Once
you've verified the resources for your cluster, you'll install and configure Kubernetes
before you deploy an SQL Server 2019 big data cluster on it.

You have three primary targets to create a Kubernetes cluster (which includes
OpenShift):

1.	 Using a Kubernetes service (such as the Azure Kubernetes Service (AKS)

2.	 Using an on-premises installation of Kubernetes

3.	 Using a local/laptop installation of Kubernetes

Let's get an overview of each of these.

Using a Kubernetes service

By far the easiest, quickest, and simplest way to install Kubernetes is not to install
it at all. The Microsoft Azure cloud has a service called AKS that you can use for a
Kubernetes cluster with just a few clicks. You can read more about AKS here: https://
docs.microsoft.com/en-us/azure/aks/intro-kubernetes.

Deploying a Kubernetes cluster on AKS is quite simple, and it also provides logging,
reporting, and more. The configuration that is the most important for SQL Server 2019
big data clusters is the size of the virtual machines, the networking configuration, and
the number and type of disks for storage volumes.

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes

Installation and configuration | 259

You can read more about setting those up, along with the specifications for a "base"
configuration, here: https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-
on-aks?view=sqlallproducts-allversions.

Once the Kubernetes deployment to AKS is complete, you can move on to installing the
big data clusters. More on that in a moment.

Using an on-premises Kubernetes installation

The next option you have for working with Kubernetes is to install it locally or in your
own datacenter. The advantage to this deployment is that you completely control the
environment, you can use physical hardware or virtual machine technology, and you
can configure and control a completely private security boundary.

There are quite a few methods for deploying Kubernetes on-premises, but the primary
process is to download the Kubernetes program and install it, and then use the kubeadm
utility to configure the cluster, storage, and nodes you want. You can read more about
how to do that here: https://kubernetes.io/docs/setup/.

Once again, the sizes of the nodes and the storage configuration is important to the
function of the big data cluster. You can read more about the "base" configuration
of a big data cluster deployed locally here: https://docs.microsoft.com/en-us/sql/
big-data-cluster/deploy-with-kubeadm?view=sqlallproducts-allversions.

Once the Kubernetes on-premises deployment is complete, you can move on to
installing the big data clusters. More on that in a moment.

Working with a Dev/Test environment

Another option for creating a Kubernetes cluster is to use minikube. This utility creates
a single-node cluster, suitable only for development and testing. You should have at
least 64 GB of RAM, fast storage, and ample processing power to use this environment
for big data clusters.

The process for installing and configuring minikube is here: https://kubernetes.io/
docs/tutorials/hello-minikube/, and the considerations regarding deployment
size are here: https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-on-
minikube?view=sqlallproducts-allversions.

Note

You can often deploy a Dev/Test environment faster and cheaper using AKS. The
resources for a single-node deployment in minikube can be costly to implement on
your own system.

https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-on-aks?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-on-aks?view=sqlallproducts-allversions
https://kubernetes.io/docs/setup/
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-with-kubeadm?view=sqlallproducts-allver
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-with-kubeadm?view=sqlallproducts-allver
https://kubernetes.io/docs/tutorials/hello-minikube/
https://kubernetes.io/docs/tutorials/hello-minikube/
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-on-minikube?view=sqlallproducts-allvers
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-on-minikube?view=sqlallproducts-allvers

260 | SQL Server 2019 Big Data Clusters

Once the Kubernetes deployment on minikube is complete, you can move on to
installing the big data clusters. More on that in a moment.

Deploying the big data clusters on a Kubernetes cluster

Before you complete the configuration for Kubernetes in preparation for deploying big
data clusters, you should understand the storage impacts of working with a database
in a Kubernetes cluster. Reliable, durable storage is essential for a database system,
and Kubernetes implements durable storage as persistent volumes. These are often
implemented as Storage Classes by the deployment target, and AKS, kubeadm, and
minikube all have slightly different ways of ensuring the proper storage configuration.
You can read more about those here: https://docs.microsoft.com/en-us/sql/big-data-
cluster/concept-data-persistence?view=sqlallproducts-allversions.

With your Kubernetes cluster deployed and your persistent volumes configured, you're
ready to create your SQL Server 2019 big data cluster.

Deploying the big data clusters is done using a Notebook in the Azure Data Studio
tool, or a Python tool called azdata. Let's focus on the azdata utility. After downloading
and installing it (more on that here: https://docs.microsoft.com/en-us/sql/big-data-
cluster/deploy-install-azdata?view=sqlallproducts-allversions. you'll run azdata,
targeting your Kubernetes cluster. The azdata utility uses several YAML files embedded
within the tool, which specifies the configuration for all of the pods, nodes, and
services you learned about earlier. You can override those settings with a switch when
you call the command, or, with another switch, you can point the utility to a separate
YAML file. For a complete description of the switches you can use and how to read the
deployment YAML, visit: https://docs.microsoft.com/en-us/sql/big-data-cluster/
reference-deployment-config?view=sqlallproducts-allversions. This describes the
complete deployment using the utility and how you can alter those options using YAML
files.

Note

The Azure Data Studio tool has a series of steps you can use to deploy big data
clusters on your Kubernetes, and, after you enter various parameters, it runs the
azdata utility for you.

https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence?view=sqlallproducts-a
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence?view=sqlallproducts-a
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-install-azdata?view=sqlallproducts-allv
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-install-azdata?view=sqlallproducts-allv
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-deployment-config?view=sqlallproduct
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-deployment-config?view=sqlallproduct

Installation and configuration | 261

Microsoft created a Python script that will set up a complete SQL Server 2019 big data
cluster for you in AKS. You'll need a Microsoft Azure subscription with rights to create
appropriate resources and the installation tools (such as Python, kubectl, and azdata)
installed and configured. With all of that in place, it's a simple command to deploy a big
data cluster:

python deploy-sql-big-data-aks.py

You can read more about how to install the tools and other preparations for the
deployment here: https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-
big-data-cluster-deploy?view=sqlallproducts-allversions.

Once the system is installed, you can view the pods, nodes, and services it provides with
the kubectl commands. This one, for instance, gets the service names and the internal
and external IP addresses of the controller service:

kubectl get svc controller-svc-external -n <your-big-data-cluster-name>

Once you have that external IP address, you can use it to list all of the cluster
components with the azdata tool. First, you log into the cluster using the information
from the previous command, and the name and password you set during installation:

azdata login --controller-endpoint https://<ip-address-of-controller-svc-
external>:30080 --controller-username <user-name>

And then you can list the endpoints you'll use to connect to the component you want:

azdata cluster endpoint list

Note

Endpoints are also shown in the Big Data Cluster's panel in the Azure Data Studio
tool.

We'll go into more detail on the kubectl commands as they interact with the SQL Server
2019 big data clusters in a moment. There's a great reference on all available kubectl
commands here: https://kubernetes.io/docs/reference/kubectl/cheatsheet/.

https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy?view=sqlall
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy?view=sqlall
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

262 | SQL Server 2019 Big Data Clusters

Programming SQL Server 2019 big data clusters
After you install your SQL Server 2019 big data cluster, it's time to put it to use. While
the options for applications using big data clusters range from almost anything you can
do with SQL Server to working with Spark, there are four general areas for using the
system, with all ranges of data sizes: Online Transactional Processing (OLTP)/standard
queries, data virtualization, as a data mart, and as a data lake with Spark processing
capabilities.

Note

It's helpful to refer back to the complete architecture diagram to understand the
flow of each of the following operations.

With all of these features in a single location, you can query across multiple systems,
in multiple databases and formats, using Transact-SQL. It makes SQL Server your
organization's data hub.

Let's start with an examination of the Azure Data Studio tool that you can use to work
with big data clusters.

Azure Data Studio

You can use any tool that works with SQL Server, including SQL Server Management
Studio, to run queries on the master instance of the big data cluster.

Microsoft Azure Data Studio is an enhanced source code editor based on Microsoft
Visual Studio Code – and it can be installed on Windows, Linux, or a Mac. It has been
modified to have a special set of operations for connections to various data sources and
accepts many of the extensions in the Visual Studio Code Marketplace.

One of those extensions is called "SQL Server 2019." It provides several interesting
innovations, including running Jupyter Notebooks inside the tool and even has an
SQL kernel to run T-SQL commands. Those notebooks can also run a PySpark or other
Spark-related kernel against the big data clusters' Spark instance, which you'll see in
a moment. It also has built-in connectors for the big data cluster features, as well as
being able to connect to any SQL Server instance.

While a complete tutorial for the product is beyond the scope of the book, the basics
are that once you have installed the SQL Server 2019 extension, you can register your
big data cluster server for access. Click the server icon in the left most panel, and you'll
see three smaller icons to the right side of the Server's bar.

Programming SQL Server 2019 big data clusters | 263

Clicking the first icon adds a new server registration. Simply type in the IP address,
31433 (or the DNS name, 31433, if you registered your master instance with a
DNS server), of the master instance in the big data clusters and the SQL Server
authentication name and password you set when you deployed the big data cluster:

Figure 9.7: Azure Data Studio server registration

From there, you can double-click the master instance and you'll get a management
panel, and the ability to run queries and notebooks. You'll use this tool throughout this
chapter.

264 | SQL Server 2019 Big Data Clusters

Once you've logged in, you're presented with the main panel for the SQL Server 2019
big data clusters master instance:

Figure 9.8: Azure Data Studio connection

If you double-click the instance name on the left side, you'll get a panel that allows you
to perform various management tasks. Right-click the instance name and select New
query from the menu that displays and you're ready to write your Transact-SQL code.

If you'd like a complete tutorial for the Azure Data Studio tool, along with how to install
and configure it, refer to: https://docs.microsoft.com/en-us/sql/azure-data-studio/
tutorial-sql-editor?view=sql-server-2017.

Relational operations

At its heart, the big data cluster is used for SQL Server data storage and processing.
You can connect to the system using standard SQL Server tools (such as SQL Server
Management Studio or Azure Data Studio) in the same manner as any SQL Server
instance, although the TCP/IP port is port 31433 by default, as you saw in the last
kubectl command. You can also connect to it from any application that you can connect
to SQL Server with, for instance, using a .NET, Python, or other application. The general
idea is that "it's just SQL Server."

https://docs.microsoft.com/en-us/sql/azure-data-studio/tutorial-sql-editor?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/azure-data-studio/tutorial-sql-editor?view=sql-server-2017

Programming SQL Server 2019 big data clusters | 265

Note that since the master instance of SQL Server in the big data cluster is running
on a Linux container, you have access to most of the same features and configurations
available in SQL Server on Linux. It's also important to note that SQL Server Machine
Learning Services are installed but must be enabled. The same commands and
configurations you learned in the last chapter apply to the SQL Server master instance
in big data clusters.

Queries you write for the master instance can work not only with SQL Server relational
data, but also with other sources of data inside and outside the cluster, in a hybrid
fashion. Your developers write T-SQL code and can take advantage of data in other
systems. Here's a standard query you can run:

/* Instance Version */

SELECT @@VERSION;

GO

/* General Configuration */

USE master;

GO

EXEC sp_configure;

GO

/* Databases on this Instance */

SELECT db.name AS 'Database Name'

, Physical_Name AS 'Location on Disk'

, Cast(Cast(Round(cast(mf.size as decimal) * 8.0/1024000.0,2) as
decimal(18,2)) as nvarchar) 'Size (GB)'

FROM sys.master_files mf

INNER JOIN

 sys.databases db ON db.database_id = mf.database_id

WHERE mf.type_desc = 'ROWS';

GO

SELECT * from sys.master_files

266 | SQL Server 2019 Big Data Clusters

And further evidence of "it's just SQL Server" is that you can simply copy a backup file to
the master instance pod's filesystem using the kubectl cp command:

kubectl cp WWI.bak master-0:/var/opt/mssql/data -c mssql-server -n sqlbigdata

And then restore that backup, even if it was taken on an earlier version of SQL Server or
on Microsoft Windows, with the same commands you use on any other instance:

/* Add the Customer Databases for Wide World Importers */

USE [master]

RESTORE DATABASE [WideWorldImporters]

FROM DISK = N'/var/opt/mssql/data/WWI.bak'

WITH FILE = 1

, REPLACE

, MOVE N'WWI_Primary' TO N'/var/opt/mssql/data/WideWorldImporters.mdf'

, MOVE N'WWI_UserData' TO N'/var/opt/mssql/data/WideWorldImporters_UserData.
ndf'

, MOVE N'WWI_Log' TO N'/var/opt/mssql/data/WideWorldImporters.ldf'

, MOVE N'WWI_InMemory_Data_1' TO N'/var/opt/mssql/data/WideWorldImporters_
InMemory_Data_1'

, NOUNLOAD, STATS = 5;

GO

Note the WITH MOVE clause, just as you would use on a Microsoft Windows-based SQL
Server instance, but with the paths modified for a Linux filesystem. That's all there is
to it – no other changes are necessary to work with the same database backup from
Windows in the big data cluster.

Creating scale-out tables

There are many situations where you would want to keep a large amount of relational
data for query operations. For instance, you might want to perform business
intelligence over the top of multiple terabytes of relational data, or you might want to
query to join multiple data sources and retain the results for later use.

You learned about the PolyBase feature in Chapter 5, Data Virtualization. The SQL
Server 2019 big data cluster feature makes use of this technology throughout the
cluster.

Programming SQL Server 2019 big data clusters | 267

The master instance has the PDW engine and other PolyBase features installed and
configured. The process to create an external table is in three parts:

1.	 Create an external data source.

2.	 This is optional if the source is text-based. Create a format file for the data
elements in the external data source.

3.	 Create an external table.

From there, it's a simple matter of querying the data. Let's look at an example of
creating and querying an external data source.

You'll notice in the architecture diagram that there is an HDFS system in the storage
pool. SQL Server 2019 has been architected to read and write Parquet and Comma
Separated Values (CSV) files, and those can be stored in HDFS in the storage pool.
Using PolyBase, you can create an external data source, a format specification, and
an external table. All of these point to the HDFS endpoint, and then you can load that
directory in HDFS with text files. In this example, the code creates all of the assets to do
precisely that:

/* Create External File Format */

USE WideWorldImporters;

GO

IF NOT EXISTS(SELECT * FROM sys.external_file_formats WHERE name = 'csv_file')

BEGIN

 CREATE EXTERNAL FILE FORMAT csv_file

 WITH (

 FORMAT_TYPE = DELIMITEDTEXT,

 FORMAT_OPTIONS(

 FIELD_TERMINATOR = ',',

 STRING_DELIMITER = '0x22',

 FIRST_ROW = 2,

 USE_TYPE_DEFAULT = TRUE)

);

END

268 | SQL Server 2019 Big Data Clusters

/* Create External Data Source to the Storage Pool */

 IF NOT EXISTS(SELECT * FROM sys.external_data_sources WHERE name =
'SqlStoragePool')

 CREATE EXTERNAL DATA SOURCE SqlStoragePool

 WITH (LOCATION = 'sqlhdfs://controller-svc:8080/default');

/* Create an External Table that can read from the Storage Pool File
Location */ IF NOT EXISTS(SELECT * FROM sys.external_tables WHERE name =
'partner_customers_hdfs') BEGIN CREATE EXTERNAL TABLE [partner_customers_
hdfs] ("CustomerSource" VARCHAR(250) , "CustomerName" VARCHAR(250) ,
"EmailAddress" VARCHAR(250)) WITH (DATA_SOURCE = SqlStoragePool, LOCATION =
'/partner_customers', FILE_FORMAT = csv_file); END

Now, you can query that data as if it were a standard SQL Server table object:

/* Read Data from HDFS using only T-SQL */

SELECT TOP 10 CustomerSource

, CustomerName

, EMailAddress

 FROM [partner_customers_hdfs] hdfs

WHERE EmailAddress LIKE '%wingtip%'

ORDER BY CustomerSource, CustomerName;

GO

There is also a wizard process inside Azure Data Studio that can guide you through
the process of setting up external tables, and this is often the best place to start. You
can see a guided tutorial of that process here: https://docs.microsoft.com/en-us/sql/
big-data-cluster/tutorial-query-hdfs-storage-pool?view=sqlallproducts-allversions.

Creating a data lake

In some cases, the data that you need isn't in relational format. You'd like to bring in
data from almost any source, and that's where two more components in the big data
clusters come into play: the HDFS service and the Spark service.

https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-query-hdfs-storage-pool?view=sqlallpr
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-query-hdfs-storage-pool?view=sqlallpr

Programming SQL Server 2019 big data clusters | 269

Referring back to Figure 9.5, you'll notice in the storage pool that there is an SQL Server
instance, a Spark deployment, and an HDFS deployment. Using standard Spark calls,
you can import, manipulate and combine, and perform other operations on massive
amounts of data.

You can load data directly to the HDFS service using kubectl cp commands, by calling
the API associated with it, or by using an application to load from a source to storage
directly.

You can see an example of using these methods here: https://docs.microsoft.com/
en-us/sql/big-data-cluster/tutorial-data-pool-ingest-spark?view=sqlallproducts-
allversions.

Note that in the Azure Data Studio tool, you can also see the HDFS node's data
directories just below the database list in the Object Browser panel. You can right-
click this menu entry to view a file, create a directory, or even upload a new file into a
directory on the HDFS node.

In addition, you can mount a storage point in the HDFS of the storage pool that points
to Amazon's S3 storage or Microsoft Azure's data lake storage (generation 2) so that
you extend the reach of the data lake even further. Once you configure that setup, the
remote storage is a directory within your HDFS system, and you can access it just as in
the previous example for creating an HDFS data source.

You can read more about the process to do that and the restrictions on
its use at https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-
tiering?view=sqlallproducts-allversions.

Working with Spark

You learned about Spark at the beginning of this chapter. You submit Spark jobs (in the
form of .jar or .py files) to a Spark API, either by running a Spark job in Azure Data
Studio, using a new Jupyter Notebook in Azure Data Studio with the kernel pointed to
PySpark or SparkR, or by using IntelliJ. Let's take a brief look at each.

Note

If you're new to Spark job processing, here's a brief overview of the terms used in
this section: https://spark.apache.org/docs/latest/cluster-overview.html.

https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-data-pool-ingest-spark?view=sqlallpro
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-data-pool-ingest-spark?view=sqlallpro
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-data-pool-ingest-spark?view=sqlallpro
https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-tiering?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-tiering?view=sqlallproducts-allversions
https://spark.apache.org/docs/latest/cluster-overview.html

270 | SQL Server 2019 Big Data Clusters

Submitting a job from Azure Data Studio

Azure Data Studio provides two options for loading a Spark job: using a Juypter
Notebook and using a Submit Job action. In the Jupyter Notebook, you'll connect to the
cluster through the SQL Server master instance, and then set the kernel to PySpark,
Scala, or SparkR, depending on which language you plan to use. Double-click the
master instance node in the server browser of Azure Data Studio, and you'll be brought
to the main management panel. Open the Big Data Clusters panel and you're presented
with the ability to open a new Jupyter Notebook:

Figure 9.9: Azure Data Studio connection to Spark

Programming SQL Server 2019 big data clusters | 271

Still connected to the master instance, change the kernel to the one you want to work
with. Now, you're able to create code cells to run on Spark:

Figure 9.10: Azure Data Studio Spark Notebook

272 | SQL Server 2019 Big Data Clusters

It is most often the case that you will want to write code containing many steps,
designed to be scaled to multiple nodes. These are usually done in Java or Python.

In Java, as you learned in Chapter 8, Machine Learning Services Extensibility Framework,
you can bundle multiple files in .jar format, and then submit that code to Spark for
distribution from the driver program to the executors. You can do the same with .py
files. To submit a job this way, from the Big Data Clusters panel, select the Submit Spark
Job icon, and then fill out the location of the files you want to run:

Figure 9.11: Azure Data Studio submits a job to Spark

Submitting a Spark job from IntelliJ

The IntelliJ system allows you to create, edit, and deploy Spark jobs. In SQL Server
2019 Big Data Clusters, this involves installing a Software Development Kit (SDK),
the Integrated Development Environment (IDE), and a toolkit to connect IntelliJ to
Microsoft Azure (and the big data cluster).

With all of the prerequisites set up (more on that later), you will either download and
install the proper certificate to talk to the cluster or use a self-signed certificate. From
there, you write your code, connect to the SQL Server big data cluster endpoint hosting
the security routing for Spark (more on that in a moment), and submit the jobs, all from
the IntelliJ environment.

Management and monitoring | 273

Spark job files and data locations

Spark can work directly with data in the storage pool HDFS node or make a call out to
the SQL Server using various libraries in a set of code. The Java, Python, R, or SparkML
code can also make calls out to other data sources, and be used for streaming. The
HDFS system in the SQL Server storage pool of the cluster can also house the .jar and
.py files for your Spark jobs. You'll learn more about securing these files in the sections
that follow.

There is, of course, much more to learn about working with Spark and, for more details,
refer to: https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-
job?view=sqlallproducts-allversions.

Management and monitoring
Although you can use and program the SQL Server 2019 big data clusters with standard
T-SQL commands, there are quite a few components in addition to a single database
server in the system. You'll need to employ some new tools to monitor the system, as
well as to manage it.

In general, you'll use your regular SQL Server monitoring tools for database-specific
operations, Kubernetes commands for the infrastructure, and visualization and logging
tools for a complete overview of the system.

SQL Server components and operations

Since you are dealing with SQL Server in big data clusters, from the master instance to
the computer pool, storage pool, and data pool, you can use the full range of tools for
monitoring and management that work with any (Linux-based) SQL Server instance.
You'll use the standard Dynamic Management Views (DMVs), T-SQL management
and monitoring statements, graphical tools in SQL Server Management Studio and
Azure Data Studio, and any third-party tools you can connect to SQL Server. You'll
create users, objects, and more using the same tools you've been using for SQL Server
monitoring and management.

Kubernetes operations

The primary tool for managing and monitoring a Kubernetes cluster is kubectl. Typing
kubectl and pressing Enter will get you a reference to the complete documentation, and
a list of the categories of commands you can work with.

To get specific help on a command, simply add --help to the end of that command:

kubectl get pods --help

https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-job?view=sqlallproducts-allversio
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-job?view=sqlallproducts-allversio

274 | SQL Server 2019 Big Data Clusters

Here are some basic commands for working with your cluster:

Table 9.12: Showing kubectl commands

SQL Server 2019 big data cluster operations

The SQL Server 2019 big data cluster is deployed and managed using a Python-based
utility called azdata. This tool works similar to the kubectl command, but works
specifically with the SQL Server 2019 big data cluster.

You've already used this tool to deploy your cluster, log in, and retrieve your service
endpoints earlier in this chapter. Following that, there are a few other interesting
commands to keep in mind:

Table 9.13: Showing azdata commands

Management and monitoring | 275

For a full list of these commands and more information on how they are used, type:

azdata --help

For more detailed information on working with the azdata tool, refer to: https://docs.
microsoft.com/en-us/sql/big-data-cluster/reference-azdata?view=sqlallproducts-
allversions.

Monitoring performance and operations with Grafana

Because the SQL Server 2019 Big Data Cluster feature involves multiple components,
you require a cross-platform central tool to perform two primary monitoring functions:
visualizations and log queries. Grafana is an open source technology that has very rich,
customizable visualizations that display in a web page. SQL Server 2019 Big Data Cluster
include Grafana as one of the "Support Services" shown in the overall architecture
diagram. You can reach the visualization at the IP address shown with port 30777 in
your kubectl get service query, and with the directory of /grafana selected:

https://serviceipaddress:30777/grafana

There's a general Host Node Metrics dashboard included in SQL Server 2019 Big Data
Cluster, and also a specific set of SQL Server metrics included that you can see here:

Figure 9.14: Grafana SQL Server monitoring

You can also add your own dashboards or customize the included visualizations, export
the metrics, or share the dashboard with others. For more detailed information on
working with Granfana, refer to: https://grafana.com/docs/.

https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata?view=sqlallproducts-allversio
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata?view=sqlallproducts-allversio
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata?view=sqlallproducts-allversio
https://serviceipaddress:30777/grafana
https://grafana.com/docs/

276 | SQL Server 2019 Big Data Clusters

Monitoring logs with Kibana

Visualizing the performance counters and other metrics within your cluster's
components is very important, but you'll also need to examine the various logs in the
system – and that's where another open source technology called Kibana comes in. This
is another of the shared services located in the architecture diagram.

Kibana is a graphical log query and display tool, but it includes two additional
features that make it more powerful than just a text-in-a-grid display: Timelion and
visualizations. Timelion is a query and visualize system that plugs into Kibana, and it
is a powerful tool for querying and manipulating time series data, which logs often are.
In addition, you have the ability to visualization data in the logs to show clusters of
incidents, and to group and view charts of other elements as well:

Figure 9.15: Log management with Kibana

For more detailed information on working with Kibana, visit: https://www.elastic.co/
products/kibana.

https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana

Security | 277

Spark operations

Apache Spark is included in both the SQL Server storage pool and (optionally) an
additional Spark pool. Apache Spark jobs run across various processing nodes that
access a data sub system and are shown in a graph. To examine information on all of
these processes, Spark uses multiple log files, such as:

•	 Master log files

•	 Worker log files

•	 Driver log files (client and cluster)

•	 Executor log files

You can log into the Spark cluster with the spark-shell command from the Spark node
and then use Scala programming to read and search the files, or even use various calls
(such as the Apache log file parser) in other code to read the logs. You can read more
about that here: https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/
spark-shell.html.

While you can read Spark logs with commands and programming, it is often easier to
use the graphical interface that Spark provides: the history server. This server shows
currently running jobs, the graph outline of where they are at the moment, and also
allows you to get to the logs for each node, job, and most components within the
system. The Spark History Server is shown as a panel in the Azure Data Studio tool, so
you can work from one location for Spark.

For more detailed information on working with the Spark History Server, refer
to: https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-history-
server?view=sqlallproducts-allversions.

Security
Security for SQL Server has always had a "defense-in-depth" strategy. This means
that you start with the outermost layer of the system and ensure that you have two
areas identified and mitigated for each layer: Access and Authentication. Access has
to do with what a user or process (called a Principal) can see and work with (called
Securables), and authentication is about verifying the Principal's credentials.

SQL Server has a very secure security environment, allowing you to control and
monitor very fine-grained access to the platform, the databases, and the database
objects. It supports working with Active Directory accounts, certificates, and also
SQL Server-defined and -controlled user accounts. You can also audit and monitor all
security activities, and the security profiles can reach the highest government levels of
security.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-shell.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-shell.html
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-history-server?view=sqlallproducts-allve
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-history-server?view=sqlallproducts-allve

278 | SQL Server 2019 Big Data Clusters

In an SQL Server 2019 big data cluster, it gets a bit more complex, since you're dealing
not only with SQL Server, but Spark, HDFS, and any applications you deploy.

A complete discussion of the security components and processes is beyond what we
have time for in this chapter, but let's take a look at the general concepts you need to be
aware of as regards security.

Access

Before you learn about the authorization a user will need in order to make calls to SQL
Server and Spark, you need to understand the cluster endpoints (offered as TCP/IP
addresses and ports) that each service provides. It's best understood by examining the
tools that call to them:

Figure 9.16: SQL Server 2019 big data cluster endpoints

As you can see, the primary communication method for SQL Server remains the same
– the Tabular Data Stream (TDS), or TDS. For everything else, you connect using the
HTTPS protocol.

Security setup and configuration

You saw the initial setup for SQL Server 2019 big data clusters earlier in this chapter,
but let's revisit that process with a bit more detail and focus on security. Instead of
having to install Windows, join a domain, and then install SQL Server as you would
normally do, the deployment process for SQL Server 2019 big data clusters asks you
for a series of security parameters at the outset that it will use to handle creating the
security environment for you.

Security | 279

You'll start by deciding what Active Directory (AD) the cluster will use. From there, you
will create some AD groups: an AD group for the cluster admin for Hadoop and for the
controller group, and another used for the sysadmin role in SQL Server in the cluster.
Note the details you use for those groups – you'll need them next.

Next, you'll create a non-admin AD principal for users of the Spark jobs and for logins
to the SQL Server master instance. Once again, note these details so that you can set
them in your environment for installation and deployment of the big data cluster. Note
that the non-administrator users will not have any permissions in SQL Server or in the
HDFS; they will have to be granted explicitly later.

Next, during the deployment of SQL Server 2019 big data clusters, you will set various
parameters, some of which tie back to the AD principals you created. These are part of
the JSON installation of JSON explained earlier. Here is a snippet of the kind of variables
you will set:

"security":

{

"distinguishedName": {distinguished name of domain including OU path}

 "big data clustersAdminPrincipals": {list of AD principals in the AD which
will be granted BIG DATA CLUSTERS admin rights}

 "big data clustersUserPrincipals": {list of AD principals in the AD which
will be granted BIG DATA CLUSTERS user (non-admin) rights}

 "appOwnerPrincipals": {list of AD principals in the AD which will be admin
rights on all apps} Optional

 "appReaderPrincipals": {list of AD principals in the AD which will have
read rights on all apps} Optional

"upstreamIpAddresses":{There can be multiple DNS servers for high
availability each with its own IP address.}

"domainControllerFullyQualifiedDns":{The fully qualified DNS name of domain}

"realm":{domain realm}

 "}

Because SQL Server 2019 big data clusters use containers, it is at the process level, not
at the server-joined level, as you would be if you joined a computer to an AD forest. This
means that the system uses Kerberos-based constructs to route all the security calls
through the system – a kind of impersonation so that you can log in once in AD and
have that trusted identity flow through the system.

280 | SQL Server 2019 Big Data Clusters

Each endpoint will use this "Active Directory to Kerberos" process. A keytab file will be
distributed to each pod that requires authorization. The call back to the AD controller
using SPNs is the key. The cluster controller registers each service to the AD controller
using an SPN, and each service will then reach out to the domain controller as an SPN
call.

Note

If you are not the security expert or domain administrator for your organization,
it's important to work with the security team, carefully reading through the
security documentation for SQL Server 2019 so that everyone understands how
the security works. A thorough understanding is essential to maintaining a secure
environment.

Authentication and authorization

Now that you have the AD and the Kerberos environment of the big data cluster
established, you can combine that with what you know about the endpoints of the
system to find out what happens when a user queries the system.

For SQL Server, you simply create users as you always have in the master instance. It
has a Kerberos mechanism underneath to impersonate the users based on your initial
setup. All of the Kerberos steps happen automatically for you.

As you will recall, you have not only an SQL Server engine working for you in the big
data cluster, but also one or more Spark instances. As you saw in the initial setup for
the cluster, putting the user in the proper AD group allows the user to submit Spark
jobs, but what about the data? You will recall that Spark works with HDFS, so the key
to permissions in this environment is using Access Control Lists(ACLs) (pronounced
Ackles). Using the azdata tool, you can create a directory in the HDFS node for the
Spark environment, and then change the ACLs to allow them to read and write to that
directory. Here's an example that lets Buck read and write a directory in HDFS:

azdata hdfs acl set --path '/bucksdata' --aclspec 'user:buck:rw-'

You also have the standard POSIX-compliant calls of sticky bits, masking, and more.

Security | 281

Although a small command from azdata is all you need, there's actually quite a bit
going on to make all that happen. There is, of course, much more to learn about the
security in SQL Server big data clusters, and the official documentation will have the
latest information and the greatest depth. Of all of the topics in this chapter, security
is the one you should spend the most time on before you implement the system in
production. SQL Server has long had one of the most secure platforms in the industry,
and understanding the environment is the first step in keeping your system's security
world-class.

We've only briefly explored the concepts of installation and configuration, use and
programming, and monitoring and management of the SQL Server 2019 Big Data Cluster
feature. There is much more to learn and explore. If you would like to work through an
entire tutorial involving all of these concepts and tools in a big data cluster example,
check out this resource: https://github.com/Microsoft/sqlworkshops/tree/master/
sqlserver2019bigdataclusters.

https://github.com/Microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters
https://github.com/Microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters

SQL Server 2019 opens new possibilities for developers while building and expanding on
previously introduced features. This chapter will focus on a few of these features. While
it's not covered in this chapter, SQL Server 2019 can be run in Docker containers and
accommodate modern DevOps workflows. SQL Server 2019 can be used in almost any
development environment, using native drivers and ODBC interfaces. The list is long
and includes the following:

•	 All .NET languages using ADO.Net, ODBC, Entity Framework, and other object-
relational mapping systems

•	 Java

•	 PHP

•	 R

•	 Python

•	 Ruby

Enhancing the
Developer Experience

10

284 | Enhancing the Developer Experience

There are a number of tools that you can use to develop and manage SQL Server
projects. These include Visual Studio, SQL Server Management Studio, Azure Data
Studio and, especially for cross-platform development, Visual Studio Code. Visual
Studio Code is a modern, extensible tool that runs on Mac, Linux, and Windows,
supporting dozens of programming languages.

Figure 10.1: Visual Studio Code Program

For more information and a free download of Visual Studio Code, visit https://code.
visualstudio.com/.

For more information about what is new in SQL Server 2019, visit https://
docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-
ver15?view=sqlallproducts-allversions.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions

SQL Graph Database | 285

SQL Graph Database
SQL Graph Database has powerful features for analyzing complex data. In a graph
database, relationships are a built-in feature that can be easily and dynamically
changed.

Compare this to a relational database, where relationships are created at design time.
While relationships can be modified, it is not efficient to do this dynamically. When
using a relational database, there is a performance penalty for both reads and writes
that gets worse as the relationships become more complex.

With traditional relational databases, relationships can be made between entities
(tables), but they are somewhat fixed, cumbersome, and difficult to maintain and
change.

A graph database organizes data into nodes and edges. A node might represent a
person, product, sale, address, or any other information that you would store in a
relational table.

Relationships are stored in edges, which can be dynamically updated and express
relationships as one-way or two-way. There is no practical limit on the number of edges
or the relationships stored in them. Special operators allow you to filter data based on
edge information.

Each edge can also store additional data about the relationship. For example, between
customers and orders, the edge table might contain the number of orders.

SQL Graph Database, or SQL Graph, is a set of features that organize data into
nodes and edges. In SQL Graph, node tables contain data and edge tables contain
relationships. The edge tables make even complex queries very efficient to execute.

286 | Enhancing the Developer Experience

Azure Data Studio is another powerful tool for Data Engineers and Data Scientists. It
has support for data exploration with both traditional SQL commands and also with
Jupyter style notebooks.

More information about Azure Data Studio can be found at: https://docs.microsoft.
com/en-us/sql/azure-data-studio/what-is?view=sql-server-2017:

Figure 10.2: SSMS showing the management studio structure

SQL Server 2017 featured SQL Graph support for the first time. SQL Server 2019 extends
this support in the following areas:

•	 Edge constraints

•	 Data integrity

•	 Match support in the MERGE statement

•	 Use of derived tables or view aliases in graph match queries

More information on SQL Graph can be found here:

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-
architecture?view=sql-server-2017

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-architecture?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-architecture?view=sql-server-2017

SQL Graph Database | 287

Why use SQL Graph?

SQL Graph can be especially useful for many-to-many relationships. While normal SQL
Server can handle these, they can become hard to use and understand if they are too
complex. Some use cases are as follows:

•	 A hierarchical structure such as a tree can be implemented and new relationships
added by inserting nodes in a table. More importantly, a query can use the built-in
graph operators.

•	 When there is a complex set of many-to-many relationships.

•	 High-performance data analysis on complex data.

Edge constraints

An edge or edge table creates relationships between nodes. An edge table has a format
that includes a "from" node and a "to" node, thus creating a relationship between two
nodes.

In SQL Server 2017, the edge table relationships were always many-to-many. With
the new constraint feature in SQL Server 2019, you can restrict the edge to only one
direction. This feature allows one-to-many relationships.

In the following example, we create two node tables and an edge table. Relationships
in both directions can be inserted. Then we add a constraint that restricts the
relationships to one-way. This is a very simple example intended to convey the
concepts.

Create a new database called SQLGraphDB on SQL Server 2019:

create database SQLGraphDB

go

use SQLGraphDB

go

288 | Enhancing the Developer Experience

Create Node tables called Person and City with some data:

create table Person (PersonID int primary key, PersonName varchar(10)) as
Node;

create table City (CityID int primary key, CityName varchar(10)) as Node;

insert into Person values (1, 'Sam')

insert into Person values (2, 'Dave')

insert into City values (1, 'Miami')

insert into City values (2, 'Atlanta')

Create an Edge table that will relate data between Person and City. In this case, we
will also add a column called NodeCount to use in later examples. It is optional and not
required:

create table PersonCity (NodeCount int) as Edge;

You can insert into the PersonCity edge table in either direction, from Person to City or
City to Person:

-- From Person into City

insert into PersonCity ($from_id, $to_id)

values (

  (select $node_id from Person where PersonID = 1),

  (select $node_id from City where CityID = 1))

-- From City into Person

insert into PersonCity ($from_id, $to_id)

values (

  (select $node_id from City where CityID = 2),

  (select $node_id from Person where PersonID = 2))

select * from PersonCity

SQL Graph Database | 289

Next, we will drop the PersonCity edge table and recreate it with a constraint that only
allows the Person to City direction. This statement will not work on SQL Server 2017.
The error Incorrect syntax near 'connection' is generated:

drop table if exists PersonCity

go

create table PersonCity

(

  NodeCount int,

  constraint EdgeConstraint_PersonCity connection (Person to City)

)

as Edge

Inserting edge data from Person to City still works, but attempting to insert data from
City to Person does not:

-- Person to City still succeeds

insert into PersonCity ($from_id, $to_id)

values (

  (select $node_id from Person where PersonID = 1),

  (select $node_id from City where CityID = 1))

--  City to Person fails

insert into PersonCity ($from_id, $to_id)

values (

  (select $node_id from City where CityID = 2),

  (select $node_id from Person where PersonID = 2))

Attempting to insert data from City to Person fails and generates the following error:

Msg 547, Level 16, State 0, Line 51

The INSERT statement conflicted with the EDGE constraint "EdgeConstraint_
PersonCity". The conflict occurred in database "SQLGraphDB", table "dbo.
PersonCity".

The statement has been terminated.

290 | Enhancing the Developer Experience

You can also alter an existing table to add a constraint. If the constraint exists, you
must drop it first. If there are multiple constraints, then all constraints must be met
when inserting data:

alter table PersonCity add constraint EdgeConstraint_PersonCity connection
(Person to City);

For more information on edge constraints, go to https://docs.microsoft.com/en-us/
sql/relational-databases/tables/graph-edge-constraints?view=sqlallproducts-
allversions.

For more information on SQL Graph in SQL Server 2019, visit https://blogs.msdn.
microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-
constraints-on-sql-server-2019/.

SQL Graph data integrity enhancements

With SQL Server 2017, there were no restrictions on deleting records when using graph
tables with nodes and edges. For example, if you had an edge table that referenced a
node record, you could successfully delete the node record, leaving an orphan edge
record.

In SQL Server 2019, the referential integrity will be maintained and you will get an error
if you try to delete a node record contained in an edge table.

Using the example Person, City, and PersonCity tables from earlier, try to delete an
entry from the Person table contained in the PersonCity edge table. Attempting to do
the deletion will cause an error:

delete from Person where PersonID = 1

The previous code will result in this error:

Msg 547, Level 16, State 0, Line 80

The DELETE statement conflicted with the EDGE REFERENCE constraint
"EdgeConstraint_PersonCity". The conflict occurred in database "SQLGraphDB",
table "dbo.PersonCity".

The statement has been terminated

SQL Graph MATCH support in MERGE

The MERGE statement is used to simplify inserting and updating data in a table. It can do
this in one statement instead of using separate INSERT, UPDATE, and DELETE statements.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sqlallproducts-allversions
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/

SQL Graph Database | 291

SQL Server 2019 now supports using SQL Graph MATCH clauses in a MERGE statement.

The MERGE statement is supported in both node and edge tables. In the case of node
tables, MERGE is the same as with any SQL table.

The following sample of the MATCH statement references a row in a node table that
already exists and will update the row with new data:

select PersonID, PersonName from Person

--

Declare @PersonID int = 1

Declare @PersonName varchar(10) = 'Bobbi'

MERGE Person

    USING (SELECT @PersonID, @PersonName)

    AS tmp (PersonID, PersonName)

    ON (Person.PersonID = tmp.PersonID)

WHEN MATCHED THEN

    UPDATE SET PersonName = tmp.PersonName

WHEN NOT MATCHED THEN

    INSERT (PersonID, PersonName)

    VALUES (tmp.PersonID, tmp.PersonName) ;

See if the update to the existing node table row succeeded:

Select PersonID, PersonName from Person

Now, to test the insertion, specify an ID that is not in the table:

Declare @PersonID int = 3

Declare @PersonName varchar(10) = 'Marc'

MERGE Person

292 | Enhancing the Developer Experience

    USING (SELECT @PersonID, @PersonName)

    AS tmp (PersonID, PersonName)

    ON (Person.PersonID = tmp.PersonID)

WHEN MATCHED THEN

    UPDATE SET PersonName = tmp.PersonName

WHEN NOT MATCHED THEN

    INSERT (PersonID, PersonName)

    VALUES (tmp.PersonID, tmp.PersonName) ;

See that a new row with PersonName Marc has been inserted into the node table by
selecting data from the person table:

Select PersonID, PersonName from Person

In the case of an edge table, the SQL Graph relationship can now be used as part of the
MATCH clause in the MERGE statement. The MATCH graph search syntax in SQL Server 2019
is defined as follows:

<graph_search_pattern>::=

    {<node_alias> {

                     { <-(<edge_alias>)- }

                   | { -(<edge_alias>)-> }

                 <node_alias>

                 }

     }

     [{ AND } { (<graph_search_pattern>) }]

     [,...n]

  

<node_alias> ::=

    node_table_name | node_alias

<edge_alias> ::=

    edge_table_name | edge_alias

SQL Graph Database | 293

The MATCH condition in the MERGE statement can now contain a graph search pattern. In
our Person, City, and PersonCity case, this pattern could be as follows:

.. on MATCH (Person-(PersonAndCity)->City)

It could also be this:

.. on MATCH (Person<-(PersonAndCity)-City)

For this example, we use the NodeCount field of the PersonAndCity edge table. To start,
clean out the edge table:

delete from PersonCity

The following SQL will insert or update rows in the edge table. Because the edge table is
empty, it will insert a row:

declare @PersonID int = 1

declare @CityID int = 1

-- From Person into City

Merge PersonCity

  using ((select @PersonID, @CityID) as tmp (PersonID, CityID)

    join Person on tmp.PersonID = Person.PersonID

    join City on tmp.CityID = City.CityID)

  on MATCH (Person-(PersonCity)->City)

when MATCHED then

  update set NodeCount = isnull(NodeCount, 0) + 1

when NOT MATCHED THEN

  insert ($from_id, $to_id, NodeCount)

  values (Person.$node_id, City.$node_id, 1);

select * from PersonCity

The result is one row with a NodeCount of 1 that will look something like the following:

Figure 10.3: Output of inserting/updating rows in the edge table

294 | Enhancing the Developer Experience

If you execute the MERGE statement again, there will still be only one row, but the
NodeCount will equal 2.

For more information about SQL Graph MATCH support in the MERGE statement, see
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/07/16/match-
support-in-merge-dml-for-graph-tables/.

Using a derived table or view in a graph MATCH query

In SQL Server 2019, you can utilize views or derived tables in a MATCH query. As an
example, if you have two node tables that contain data, and a third table related to
the first two by an edge table, you can combine the two node tables with a UNION ALL
command into a view that can be used with an edge table in a MATCH statement. Using a
table variable will also work but is not covered here.

We will drop and recreate some of the example tables and will make a view that
combines Person and Company data related by the IsInCity MATCH clause in the union
statement.

drop table if exists PersonCity

drop table if exists IsInCity

drop view if exists PersonCompany

drop table if exists Person

drop table if exists Company

drop table if exists City

create table Person (PersonID int, PersonName varchar(20), CityName
varchar(20)) as Node

create table Company (CompanyID int, CompanyName varchar(20), CityName
varchar(20)) as Node

create table City (CityID int, CityName varchar(20)) as Node

create table IsInCity as Edge

go

insert into Person values(1,'Amy', 'Atlanta')

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/07/16/match-support-in-merge-dml-for-graph-tables/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/07/16/match-support-in-merge-dml-for-graph-tables/

SQL Graph Database | 295

insert into Person values(2,'Bob', 'Boston')

insert into Company values(1,'Acme', 'Atlanta')

insert into Company values(2,'Beta', 'Boston')

insert into City values(1,'Atlanta')

insert into City values(2,'Boston')

select * from  Person, Company, City

insert into IsInCity ($from_id, $to_id)

values (

  (select $node_id from Person where CityName = 'Atlanta'),

  (select $node_id from City where CityName = 'Atlanta'))

insert into IsInCity ($from_id, $to_id)

values (

  (select $node_id from Company where CityName = 'Boston'),

  (select $node_id from City where CityName = 'Boston'))

select * from IsInCity

create View PersonCompany as

select PersonID as id, PersonName as [PCName], CityName from Person

union all

296 | Enhancing the Developer Experience

select CompanyID as id, CompanyName, CityName from Company

select * from PersonCompany

select pc.id, pc.PCName, pc.CityName

from PersonCompany PC,

City,

IsInCity

where Match(PC-(IsInCity)->City)

and City.CityName = 'Atlanta'

Using views and table variables adds flexibility and options when working with graph
search terms.

Java language extensions
SQL Server 2016 introduced an extensibility framework for running external scripts
such as R and Python.

This extensibility framework is exposed using the sp_execute_external_script system
stored procedure. SQL Server 2019 supports Java on both Windows and Linux.

The windows installation will is covered in this book and here: https://docs.microsoft.
com/en-us/sql/language-extensions/install/install-sql-server-language-extensions-
on-windows?view=sqlallproducts-allversions#java-jre-jdk

Linux installation instructions can be found at https://docs.microsoft.com/en-us/sql/
linux/sql-server-linux-setup-language-extensions?view=sqlallproducts-allversions

Why language extensions?

Language extensions allow you to extend SQL Server to use external code as part of
SQL operations. Writing complex procedures in high-level languages such as Java,
Python, and R can be much easier and more straightforward to test.

Starting with SQL Server 2005, there was Common Language Runtime (CLR)
Integration. This feature was not widely used, somewhat cumbersome, and not
recommended in most cases.

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-language-extensions?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-language-extensions?view=sqlallproducts-allversions

Java language extensions | 297

The extensibility framework provides a solid base for allowing extensions in R, Python,
and now Java. An example use case would be address correction. An address can be
validated or corrected by way of a SQL stored procedure that calls custom Java code
that can run arbitrary code and take advantage of existing code libraries.

You can add code that allows almost infinite extension of SQL Server's functionality.

Installation

You must have SQL Server 2019 installed and have added the Machine Learning Services
and Language Extensions or select this option when you install the instance.

To get the Java extensions, you have to install SQL Server Language Extensions. You
can install these on either Windows or Linux. The following screenshot shows the SQL
Server feature installation screen on Windows. Java is now a built in feature of Machine
Learning Services:

Figure 10.4: The SQL Server feature installation screen on Windows

298 | Enhancing the Developer Experience

This will install the default Java runtime, Zulu Open JRE (Java Runtime Environment)
version 11.0.3. If you need the full JDK (Java Development Kit) for compilers and other
dev tools or want to install your own distribution you are free to do that.

Figure 10.5: The Java Install dialogue

SQL Server 2019 support Java 11 on Windows. If you do install your own distribution, it
should be installed in the default /Program Files/ folder if possible to avoid separate
steps to set the required permissions. If you need the JDK you can download it from
https://www.azul.com/downloads/zulu-community/.

You will need to add JRE_HOME as a system environment variable so that SQL Server can
find the correct Java runtime.

You will need the location of the JRE home path. For the default installation this will
be at: C:\Program Files\Microsoft SQL Server\MSSQL15.<your instance name>\AZUL-
OpenJDK-JRE

https://www.azul.com/downloads/zulu-community/

Java language extensions | 299

There is more than one way to add/edit environment variables. On Windows 10, you
can use File Explorer and browse to Control Panel\System and Security\System. Click
on Advanced system settings. In the dialog box that pops up, click on Environment
Variables. JRE_HOME must be added as a system variable and should point to the JRE
directory in your JRE or JDK installation, as shown here:

Figure 10.6: Adding/editing environment tables

If you did not install the JDK or JRE in the default location under Program Files, you
need to give read and execute permission to SQL.

Next, enable external scripts with the sp_configure command. You can also execute the
command with no arguments to see current settings. RECONFIGURE will set the run-time
value of the configuration setting:

exec sp_configure 'external scripts enabled', 1

RECONFIGURE WITH OVERRIDE

300 | Enhancing the Developer Experience

Verify that the running version is enabled by executing the sp_configure command to
see a list of the configuration items and both their configured and runtime status.

Now you need to create an external language. javaextension.dll is in the BINN directory
in the install directory of SQL server after installing the extensions. Take this file,
put it in a ZIP file, and refer to it. I put the ZIP file in my development directory. More
information is available in the Microsoft docs: https://docs.microsoft.com/en-us/
sql/t-sql/statements/create-external-language-transact-sql?view=sqlallproducts-
allversions.

The following SQL script will create an external language from the code we have built:

CREATE EXTERNAL LANGUAGE Java

FROM (CONTENT = N'c:\Projects\SQL2019Java\javaextension.zip', FILE_NAME =
'javaextension.dll');

GO

In that same SQL Server installation directory, you will also find the Microsoft
Extensibility SDK: mssql-java-lang-extension.jar. I copied this to my development
directory for later use when I compile my custom Java program. You also have to specify
it as an external library for our Java language that we just created. On my system where
I have multiple SQL instances, including a Customer Technical Preview (CTP) version
the command looks like this:

-- Create external libraries

CREATE EXTERNAL LIBRARY SDK

FROM (CONTENT = 'C:\Program Files\Microsoft SQL Server\MSSQL15.SQL20191600\
MSSQL\Binn\mssql-java-lang-extension.jar')

WITH (LANGUAGE = 'Java');

GO

Sample program

Using the Java command-line compiler, we will create an extension and compile and
load the library into SQL Server.

This program performs string splits on a text field and outputs two fields if the split was
successful. It has one parameter: the split delimiter.

Create a database and table for testing:

CREATE DATABASE SQL2019Java

GO

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-language-transact-sql?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-language-transact-sql?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-language-transact-sql?view=sqlallproducts-allversions

Java language extensions | 301

USE SQL2019Java

GO

CREATE TABLE TestJava (

    id int NOT NULL,

    FullName nvarchar(100) NOT NULL

)

GO

Insert some data:

INSERT INTO TestJava (id, FullName) VALUES (1, 'Dave Noderer')

INSERT INTO TestJava (id, FullName) VALUES (2, 'John Smith')

INSERT INTO TestJava (id, FullName) VALUES (3, 'NoLastName')

GO

Copy the following code into a file called NameSplit.java:

package pkg;

import com.microsoft.sqlserver.javalangextension.PrimitiveDataset;

import com.microsoft.sqlserver.javalangextension.
AbstractSqlServerExtensionExecutor;

import java.util.LinkedHashMap;

import java.util.LinkedList;

import java.util.ListIterator;

import java.util.regex.*;

public class NameSplit extends AbstractSqlServerExtensionExecutor {

    private Pattern expr;

    public NameSplit() {

        // Setup the expected extension version, and class to use for input
and output dataset

        executorExtensionVersion = SQLSERVER_JAVA_LANG_EXTENSION_V1;

        executorInputDatasetClassName = PrimitiveDataset.class.getName();

302 | Enhancing the Developer Experience

        executorOutputDatasetClassName = PrimitiveDataset.class.getName();

    }

    

    public PrimitiveDataset execute(PrimitiveDataset input,
LinkedHashMap<String, Object> params) {

        // Validate the input parameters and input column schema

        validateInput(input, params);

        int[] inIds = input.getIntColumn(0);

        String[] inValues = input.getStringColumn(1);

        int rowCount = inValues.length;

        String delimchar = (String)params.get("delimchar");

       // expr = Pattern.compile(regexExpr);

        System.out.println("delimiter: " + delimchar);

        // Lists to store the output data

        LinkedList<Integer> outIds = new LinkedList<Integer>();

        LinkedList<String> outVal1 = new LinkedList<String>();

        LinkedList<String> outVal2 = new LinkedList<String>();

        // Evaluate each row

        for(int i = 0; i < rowCount; i++) {

            outIds.add(inIds[i]);

            if(inValues[i].contains(delimchar)) {

                String[] vals = inValues[i].split(Pattern.quote(delimchar));

                outVal1.add(vals[0]);

                outVal2.add(vals[1]);

            }

            else {

                outVal1.add(inValues[i]); // just output the input string in

Java language extensions | 303

val1

      outVal2.add("");

            }

        }

        int outputRowCount = outIds.size();

        int[] idOutputCol = new int[outputRowCount];

        String[] val1OutputCol = new String[outputRowCount];

        String[] val2OutputCol = new String[outputRowCount];

        // Convert the list of output columns to arrays

        outVal1.toArray(val1OutputCol);

        outVal2.toArray(val2OutputCol);

        ListIterator<Integer> it = outIds.listIterator(0);

        int rowId = 0;

        System.out.println("Output data:");

        while (it.hasNext()) {

            idOutputCol[rowId] = it.next().intValue();

            System.out.println("ID: " + idOutputCol[rowId] + " Val1: " +
val1OutputCol[rowId] + " Val2: " + val2OutputCol[rowId]);

            rowId++;

        }

        // Construct the output dataset

        PrimitiveDataset output = new PrimitiveDataset();

304 | Enhancing the Developer Experience

        output.addColumnMetadata(0, "ID", java.sql.Types.INTEGER, 0, 0);

        output.addColumnMetadata(1, "P1", java.sql.Types.NVARCHAR, 0, 0);

        output.addColumnMetadata(2, "P2", java.sql.Types.NVARCHAR, 0, 0);

        output.addIntColumn(0, idOutputCol, null);

        output.addStringColumn(1, val1OutputCol);

        output.addStringColumn(2, val2OutputCol);

        return output;

    }

    private void validateInput(PrimitiveDataset input, LinkedHashMap<String,
Object> params) {

        // Check for the regex expression input parameter

        if (params.get("delimchar") == null) {

            throw new IllegalArgumentException("Input parameter 'delimchar'
is not found");

        }

        else if (params.get("delimchar").toString().length() != 1)

        {

            throw new IllegalArgumentException("Input parameter 'delimchar'
must be a single character");

        }

        // The expected input schema should be at least 2 columns, (INTEGER,
STRING)

        if (input.getColumnCount() < 2) {

            throw new IllegalArgumentException("Unexpected input schema,
schema should be an (INTEGER, NVARCHAR or VARCHAR)");

        }

        // Check that the input column types are expected

        if (input.getColumnType(0) != java.sql.Types.INTEGER &&

Java language extensions | 305

                (input.getColumnType(1) != java.sql.Types.VARCHAR && input.
getColumnType(1) == java.sql.Types.NVARCHAR)) {

            throw new IllegalArgumentException("Unexpected input schema,
schema should be an (INTEGER, NVARCHAR or VARCHAR)");

        }

    }

    private boolean check(String text) {

        Matcher m = expr.matcher(text);

        return m.find();

    }

}

You can compile this using the javac command with the SDK JAR file as follows:

javac -cp mssql-java-lang-extension.jar NameSplit.java

Make a directory named pkg and copy the compiled NameSplit.class file there.

The jar command will package the class that will be loaded into SQL Server. The
resulting file is NameSplit.jar:

jar -cf NameSplit.jar pkg\NameSplit.class

Now create an EXTERNAL library from your program:

CREATE EXTERNAL LIBRARY namesplit

FROM (CONTENT = 'C:\Projects\SQL2019Java\namesplit.jar')

WITH (LANGUAGE = 'Java');

GO

If the library already exists, you can drop it with DROP EXTERNAL LIBRARY namesplit.

We will access the library through a stored procedure:

CREATE OR ALTER PROCEDURE [dbo].[java_namesplit]

@delim nvarchar(1),

@query nvarchar(400)

AS

BEGIN

306 | Enhancing the Developer Experience

--The method invoked in Java the "execute" method

EXEC sp_execute_external_script

  @language = N'Java'

, @script = N'pkg.NameSplit

, @input_data_1 = @query

, @params = N'@delimchar nvarchar(1)'

, @regexExpr = @expr

with result sets ((ID int, P1 nvarchar(100) , P2 nvarchar(100)));

END

GO

Execute the procedure with two parameters (the delimiter and a query) to get data
from our test table:

EXECUTE [dbo].[java_namesplit] N' ', N'SELECT id, FullName FROM TestJava'

GO

You should get this:

Figure 10.7: Data from our test table

That's a quick run-through of creating a Java extension. Another example can be found
at https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-
string-using-regular-expressions-in-java?view=sqlallproducts-allversions.

https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java?view=sqlallproducts-allversions

JSON | 307

JSON
JSON support was first added to SQL Server 2016. Two functions support JSON,
OPENJSON for parsing incoming data and FOR JSON for outputting JSON formatted data.

Why use JSON?

JavaScript Object Notation (JSON), is a text representation that's used to store and
share data. JSON is standard in web applications of all kinds. It is the native format of
JavaScript objects and is purely text. Using native JSON within SQL Server can make
interfaces easier to use and make the handling of NoSQL, changing schemas, and
RESTful data from the web much easier.

For example, an order from an e-commerce site or an Internet of Things (IoT) device
might arrive on the server as a JSON-formatted string. You can write this "blob" of data
into a database field and delay parsing it until later.

Another benefit for an order system would be to preserve the original order as is, as
compared to a relational form where related data might change over time.

JSON consists of simple name/value pairs with some formatting characters. For
example, if you wanted to provide a list of cities, that list might be formatted as follows
in JSON:

[{

  { "city" : "Miami"},

  { "city" : "Ft Lauderdale" },

  { "city" : "Deerfield Beach" }  

}]

With SQL Server, you can create or consume a JSON object using T-SQL. This capability
can simplify your applications and prevent the necessity of relying on another tier of
your development stack to encode/decode JSON objects.

308 | Enhancing the Developer Experience

JSON example

In the following example, we will create some JSON data, parse it into fields, insert the
data into a SQL table, then pull it back out as formatted JSON.

First, create some JSON data that might have come from an IoT device:

Declare @DeviceJson nvarchar(max)

set @DeviceJson =

'[

  { "deviceid" : 1, "devicedata": { "sensor1": 1234}, "eventdate": "2019-05-
25T20:19:04"},

  { "deviceid" : 2, "devicedata": { "sensor2": 4321}, "eventdate": "2019-05-
25T20:21:11"}

]'

The following SQL script will parse the data in @DeviceJson and display it as a table and
rows:

--

select *

from OpenJson(@DeviceJson)

  with (deviceid int '$.deviceid',

    sensor1 int '$.devicedata.sensor1',

    sensor2 int '$.devicedata.sensor2',

    eventdate datetime '$.eventdate'

)

Now, create a SQL table and insert the parsed JSON data into the table:

create table IOTData (deviceid int, sensor1 int, sensor2 int, eventdate
datetime)

insert into IOTData

select *

from OpenJson(@DeviceJson)

UTF-8 support | 309

  with (deviceid int '$.deviceid',

    sensor1 int '$.devicedata.sensor1',

    sensor2 int '$.devicedata.sensor2',

    eventdate datetime '$.eventdate'

)

Finally, read the SQL data and convert it into JSON using the FOR JSON function:

select deviceid, sensor1 as "devicedata.sensor1", sensor2 as "devicedata.
sensor2", eventdate

from IOTData

FOR JSON PATH

If you reformat the result a bit, it is identical to the original data:

[

{"deviceid":1,"devicedata":{"sensor1":1234},"eventdate":"2019-05-
25T20:19:04"},

{"deviceid":2,"devicedata":{"sensor2":4321},"eventdate":"2019-05-
25T20:21:11"}

]

For more information on JSON data in SQL Server, visit https://docs.microsoft.com/
en-us/sql/relational-databases/json/json-data-sql-server?view=sqlallproducts-
allversions.

UTF-8 support
Starting with SQL Server 2012, Unicode UTF-16 is supported with the nchar, nvarchar,
and ntext data types. Starting with SQL Server 2019, UTF-8 encoding is enabled,
through the use of a collation using a _UTF8 suffix and the non-Unicode data types of
char and varchar become Unicode-capable data types, encoded in UTF-8.

Collations that support supplementary characters, either through the use of the _SC
flag or because they are version 140 collations, can be used with the new _UTF8 flag.

Why UTF-8?

UTF-8, UTF-16, and UTF-32 can all found on the web. In recent years, UTF-8 has
become the standard. It can represent any character, and in some cases uses less
storage (at least with western languages which mostly use of ASCII characters) than
UTF-16 and the fixed format of UTF-32. UTF-8 is also backward-compatible with 7-bit
ASCII, which may or may not be important to you.

https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sqlallproducts-allversions

310 | Enhancing the Developer Experience

If you have issues with endianness, the way the processor you are using determines
which bit or byte is most significant/least significate, UTF-8 may help in that it does
not depend on endianness. For the most part, widespread use of the Intel x86 processor
has prevented some of these problems. For more information endianness, take a look at
this wiki: https://en.wikipedia.org/wiki/Endianness.

In the context of SQL Server, the collation will affect the way strings are searched and
ordered.

For example, CREATE a TABLE with a varchar field:

CREATE TABLE [dbo].[TestUTF8](

  [id] [int] IDENTITY(1,1) NOT NULL,

  [utfdata] [varchar](50) NULL

) ON [PRIMARY]

GO

The varchar field is created with a <database default> collation. SQL_Latin1_General_
CP1_CI_AS is the default database collation if this is not changed.

Now you can alter a column and set its collation to UTF-8 with an alter statement like
this:

ALTER TABLE TestUTF8 ALTER COLUMN utfdata varchar(50) COLLATE Latin1_
General_100_CI_AS_SC_UTF8

You can also enable a _UTF8 collation at the database level. If creating a new database,
all new columns will be encoded with UTF8 by default. For existing databases, only new
columns will be encoded with UTF8. For existing columns, use the alter command
above to convert to UTF8.

More information can be found here: https://docs.microsoft.com/en-us/sql/
relational-databases/collations/collation-and-unicode-support?view=sqlallproducts-
allversions.

Temporal tables
Temporal tables store data and all changes so that data from a previous point in time
can be retrieved. SQL Server 2016 added support for temporal tables. Temporal tables
are also known as system-versioned temporal tables.

https://en.wikipedia.org/wiki/Endianness
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sqlallproducts-allversions

Temporal tables | 311

Each temporal table is paired with a history table so that normal queries pull data from
the table as normal, but historical queries can be constructed that pull data from the
history table. The following diagram illustrates this:

Figure 10.8: Temporal table structure

Why temporal tables?

Some use cases of temporal tables are as follows:

•	 Audit trail – Keep a full log of what changed in the table.

•	 Accidental changes – Easily restore data that was mistakenly changed or deleted.

•	 Historical reports – Be able to report on how data changes over time.

•	 Detect changes – Compare current and previous data more easily.

Temporal table example

When creating temporal tables, you are required to have a primary key and two
datetime2 columns that are used for the SYSTEM_TIME period.

Along with the main table, a history table is created to keep timestamped table row
entries.

312 | Enhancing the Developer Experience

As an example, the following script creates myTemporalTable:

CREATE TABLE myTemporalTable

(

    id int not null,

    myText varchar(50) null,

    

    SysStartTime datetime2(7) GENERATED ALWAYS AS ROW START NOT NULL,

    SysEndTime datetime2(7) GENERATED ALWAYS AS ROW END NOT NULL ,

    PERIOD FOR SYSTEM_TIME(SysStartTime,SysEndTime),

    CONSTRAINT  PK_myTemporalTable PRIMARY KEY (id)

)

WITH

(

    SYSTEM_VERSIONING = ON

    (

        HISTORY_TABLE = dbo.my_history,

        DATA_CONSISTENCY_CHECK = ON

    )

)

GO

The SYSTEM_TIME definition will track when this row is valid. A primary key, while always
a good idea, is required for temporal tables.

SYSTEM_VERSIONING = ON is what enables the temporal history table, which is created as
part of the main table.

HISTORY_TABLE is the new or existing table that will hold historical data

DATA_CONSISTENCY_CHECK = ON performs several checks to make sure the data and
structure of the history table are correct and consistent both at creation and runtime.
More information can be found at https://docs.microsoft.com/en-us/sql/relational-
databases/tables/temporal-table-system-consistency-checks?view=sql-server-2017.

Now, if you insert some data, wait for a while and then update the value.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-table-system-consistency-checks?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-table-system-consistency-checks?view=sql-server-2017

Temporal tables | 313

When you do a query, you get back what you expect, that is, the current and updated
data:

insert into myTemporalTable (id, myText) values(1, 'data at:' +
cast(GetDate() as varchar(50)))

select * from myTemporalTable

--

-- Wait some time

--

update myTemporalTable set myText = 'data at:' + cast(GetDate() as
varchar(50))

where id = 1

select * from myTemporalTable

To retrieve historical data, the query on your temporal table needs to use for system_
time and one of the following sub-clauses:

•	 AS OF <date_time>

•	 FROM <start_date_time> TO <end_date_time>

•	 BETWEEN <start_date_time> AND <end_date_time>

•	 CONTAINED IN (<start_date_time> , <end_date_time>)

•	 ALL

For example, to retrieve all historical data, use this statement:

select * from myTemporalTable for system_time all

To retrieve data from some specific time, you can use a query such as this:

select * from myTemporalTable for system_time as of '2019-05-17 23:35'

314 | Enhancing the Developer Experience

If you look in the main table, there is only one row, but if you expand the temporal table,
you will see a my_history (History) table, which will have old versions of the data:

Figure 10.9: The temporal table expanded

You can also convert an existing table to a temporal table by adding the required
columns and a history table.

One more reminder is that you may want to take steps to truncate or archive data in
the history table, depending on how you use it!

For more information, go to https://docs.microsoft.com/en-us/sql/relational-
databases/tables/temporal-tables?view=sqlallproducts-allversions.

Spatial data types
Spatial data types are used to work with mapping systems. There are two broad
categories, geometry and geography. This discussion is focused on geography. You may
need more general and flexible geometry options, especially if you are not specifically
looking for a physical mapping capability.

Two new spatial reference identifiers (SRIDs) are available in SQL Server 2019. These
Australian GDA2020 identifiers provide more accurate data for the Australian continent
and are closely aligned with the latest GPS satellites (GNSS). For more information on
these particular identifiers, go to http://www.ga.gov.au/scientific-topics/positioning-
navigation/geodesy/datums-projections/gda2020.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sqlallproducts-allversions
http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/datums-projections/gda2020
http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/datums-projections/gda2020

Spatial data types | 315

Why spacial data types?

For any spacial or geometry calculations on spheres, such as the Earth, spacial data
types allow easy calculation of distances and other calculations in a T-SQL query.

Which spatial identifier you use will depend on your location and your needs. Each
identifier specifies the shape of the spatial coordinate system.

For a full list of identifiers on your system, use this query:

select * from sys.spatial_reference_systems

The special identifier we will use, 4326, has this definition:

GEOGCS["WGS 84", DATUM["World Geodetic System 1984", ELLIPSOID["WGS
84", 6378137, 298.257223563]], PRIMEM["Greenwich", 0], UNIT["Degree",
0.0174532925199433]]

Dealer locator example

I have used spatial data for many years in dealer locator applications. In these
applications, a list of dealers and their locations is available. When a user wants to find
a dealer near them, they specify their location using latitude and longitude, at which
point a spatial query can be made and sorts the dealers by distance.

Note that there are several ways to get a dealer's latitude and longitude. Two examples
are a postal code database or a web map service using the dealer's address.

Create a Dealers table and fill in the latitude and longitude. Note that the DealerGeo field
is of the geography type:

create table Dealers (DealerName nvarchar(50),latitude float, longitude float,
DealerGeo geography)

Insert some data. I've picked two points that are far from each other to illustrate the
process:

insert into Dealers  (DealerName, latitude, longitude)

values

('Dealer in Deerfield Beach FL', 26.3109,-80.1005),

('Dealer in Watertown, MA', 42.3702,-71.1777)

316 | Enhancing the Developer Experience

Next, we update the DealerGeo field based on the latitude and longitude. This stores a
geography "point" in the DealerGeo GEOGRAPHY field:

update Dealers set DealerGeo =  geography::STGeomFromText('POINT(' +
CAST(longitude AS VARCHAR(20)) + ' ' + CAST(latitude AS VARCHAR(20)) + ')',
4326)

where longitude is not null and latitude is not null and dealergeo is null

If you take a look at the Dealers table, you can see the format of the geography point:

select * from Dealers

Now we collect data from a user, perhaps from the GPS on their phone to get latitude
and longitude. We use this to create a point for the user and then make a query to
calculate the distance from the dealers:

-- Define a potential customer in Connecticut

Declare @customerPoint geography

set @customerPoint = geography::STGeomFromText('POINT(-72.6791 41.8596)',
4326)

The query uses the spatial STDistance function and converts from meters to miles. The
result is a list of dealers with their distances from the user:

select top 10  round(@customerPoint.STDistance(dealergeo)/1609.344,1) as
DistanceInMiles, DealerName

from Dealers

order by @customerPoint.STDistance(dealergeo)/1609.344

Spatial data types | 317

The select SQL query above will result in the following output:

Figure 10.10: Output of the select SQL query

For more information on spatial data in SQL Server, go to https://docs.microsoft.com/
en-us/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15.

If you'd like to try out any of the techniques shown in this book,
get started with a 180-day free trial of SQL Server 2019

https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-data-sql-server?view=sql-server-ver15
https://www.microsoft.com/sql-server/sql-server-downloads

SQL Server has been delivering industry-leading capabilities for the modern data
warehouse workload for many years. Mission-critical security features built into each
edition of SQL Server such as row-level security, Always Encrypted, data masking, and
others ensure that your data is secure at all times. Built-in advanced analytics using
R and Python allows you to operationalize your data science models in a secure and
performant way. SQL Server also offers industry-leading performance based on the
TPC-E and TPC-H benchmarks for 3 TB and 10 TB data warehouse workloads (https://
cloudblogs.microsoft.com/sqlserver/2019/05/16/sql-server-2017-achieves-top-
tpc-benchmarks-for-oltp-and-dw-on-linux-and-windows/). Because of all this, SQL
Server is a clear leader and trusted platform by organizations around the globe for data
warehouse workloads both on-premises and in the cloud.

Data Warehousing

11

https://cloudblogs.microsoft.com/sqlserver/2019/05/16/sql-server-2017-achieves-top-tpc-benchmarks-for-oltp-and-dw-on-linux-and-windows/
https://cloudblogs.microsoft.com/sqlserver/2019/05/16/sql-server-2017-achieves-top-tpc-benchmarks-for-oltp-and-dw-on-linux-and-windows/
https://cloudblogs.microsoft.com/sqlserver/2019/05/16/sql-server-2017-achieves-top-tpc-benchmarks-for-oltp-and-dw-on-linux-and-windows/

320 | Data Warehousing

Many organizations use data warehouses to process and aggregate large volumes
of data from many different systems for the purpose of enabling deeper analysis. A
traditional data warehouse workload consists of loading data from operational systems,
such as financial data, sales data, or inventory data, to enable long-term historical
analysis of business facts and slowly changing dimensions. A data warehouse workload
also supports complex analytical queries run by business analysts or other users who
want to understand data to support data-driven decision making. In this chapter, we'll
discuss some of the latest features and capabilities in SQL Server 2019 and how those
capabilities can be used to improve and optimize your data warehouse workloads.
We'll also discuss how investments being made in the intelligent cloud are enabling
organizations to modernize their analytics ecosystems to unlock more value and
insights for their data.

Extract-transform-load solutions with SQL Server Integration
Services
SQL Server Integration Services (SSIS) is a platform for building enterprise-scale
data integration, data transformation, and data loading (extract-transform-load, ETL)
solutions. Since the release of SQL Server 2005, organizations around the world have
been using SSIS to solve complex business problems by copying or downloading files,
cleansing and mining data, managing SQL Server objects and data, and loading data
warehouses. Even in the world of distributed systems and extract-load-transform
(ELT) patterns, ETL design patterns using SSIS have a place in many organizations that
struggle with sourcing data from multiple disparate data sources to cleanse data and
implement business logic.

SSIS includes a rich set of built-in tasks and transformations, graphical tools for
building packages, and the Integration Services Catalog database, where you store,
run, and manage packages. Packages are collections of tasks and transformations used
to perform activities such as integrating, transforming, and loading data into a variety
of systems. SSIS can be used to extract and transform data from a wide variety of
sources such as XML data files, flat files, and relational data sources that may be hosted
on-premises or in Azure and then loaded into one or many different data sources.

SSIS offers significant flexibility and capability for connecting to data sources,
transforming data, and loading data. SSIS is also very extensible. The developer and
partner ecosystems are quite robust, featuring custom, developed tasks and transforms
and a wide variety of training and consulting options. These facts make SSIS ideal for a
wide variety of ETL scenarios including loading your enterprise data warehouse.

Extract-transform-load solutions with SQL Server Integration Services | 321

Best practices for loading your data warehouse with SSIS

SSIS is a trusted ETL platform for integrating and transforming data. When using SSIS
to load your data warehouse, consider the following best practices.

•	 Dynamically filter source data to only query changed records: A key step for
building scalable and well-performing data warehouse load processes is to query
only the changed records from the source. This will reduce load on the source
systems and ensure that ETL processes finish in as little time as possible. To
accomplish this, record the maximum time stamp or key column value in a control
table as a watermark during each data load. Then, in subsequent data loads, query
the watermark value from the control table and store the value in a variable in the
SSIS package. In the Data Flow Task used to load the table in the data warehouse,
use the variable in a WHERE clause appended in the Data Flow Task source SELECT
statement to filter the data and ensure that you load only new data into the data
warehouse.

•	 Add retry logic: Using a Data Flow Task inside of a For Loop container is a great
way to build retry logic into your data warehouse loading. Create one variable to
use within the loop as the counter for the current try and a second variable that
contains a constant value for the maximum number of retries. Add a Script task
that performs a brief wait after the Data Flow Task and connect the Script task to
the Data Flow Task with a failure precedence constraint. Also, add an expression
task after the Data Flow Task using a success precedence constraint to update the
current counter variable in order to break the For Each loop after the successful
execution of the Data Flow Task.

•	 Use the smallest data type possible in your Data Flow Tasks: SSIS package Data
Flow Task transformations occur in memory on the SSIS server. This means that
Data Flow Task memory usage is managed within the Data Flow Task settings.
To use memory as efficiently as possible, utilize the smallest data types possible.
This will ensure that a maximum number of records will fit into each data buffer
during execution of the Data Flow Task. To view and modify the data types of the
columns being queried from a data source, right-click the source component and
select Show Advanced Editor. Navigate to the Input and Output Properties tab and
expand the Source Output section. Data types for a source component output are
set under the Output Columns section.

•	 Use the OLE DB destination table or view fast-load option: When using the Data
Flow Task OLE DB destination to load data to your data warehouse, be sure to use
the fast-load data access mode. The fast-load option will ensure that SQL Server
uses a bulk load when writing data into the destination table. This is ideal because
a bulk load operation will be minimally logged and will generally improve data
loading performance.

322 | Data Warehousing

•	 Avoid using the OLE DB Command transformation for loading dimensions:
The OLE DB Command transform is commonly used in data warehouse loading
scenarios to handle slowly changing dimensions. It is recommended, however, to
avoid using the OLE DB Command transform as the OLE DB Command transform
executes a SQL statement for each row in the buffer. This means that if your Data
Flow Task is updating 100,000 rows in a dimension table, your OLE DB Command
transform will execute the embedded SQL statement 100,000 times, which can
drastically degrade package performance and negatively impact the transaction
log of the data source. A better pattern is to use the Data Flow Task to load the
data to a staging table and then use an Execute SQL task to perform the updating
of the dimension table.

Clustered Columnstore Indexes
SQL Server 2019 features in-memory columnstore indexes. Columnstore indexes store
and manage data by using columnar data storage and columnar query processing. Data
warehouse workloads that primarily perform bulk loads and read-only queries will very
likely benefit from columnstore indexes. Use the columnstore index to achieve up to
10x query performance gains over traditional row-oriented storage and up to 7x data
compresson over the uncompressed data size.

SQL Server supports both clustered and nonclustered columnstore indexes. Both use
the same in-memory columnstore technology, but they do have differences in purpose
and in features they support.

For example, a clustered columnstore index is the physical storage for the table and is
the only index for the table. The clustered index is updatable so you can perform insert,
delete, and update operations on the index.

Conversely, a nonclustered columnstore index is a read-only index created on an
existing clustered index or heap table. The nonclustered columnstore index contains
a copy of a subset of columns, up to and including all of the columns in the table. The
table is read-only while it contains a nonclustered columnstore index.

The clustered columnstore index is considered the standard for storing large data
warehousing fact tables and is intended to be used in most SQL Server data warehouse
workloads. Columnstore indexes give substantial performance gains for queries that use
full table scans. Columnstore index benefits include the following:

•	 Columns often have similar data, which results in high compression rates.

•	 High compression rates often improve query performance by using a smaller
in-memory footprint. Query performance can improve because SQL Server can
perform more query and data operations in-memory.

Clustered Columnstore Indexes | 323

•	 Queries often select only a few columns from a table, which reduces total I/O
from the physical media.

•	 A new query execution mechanism called batch mode execution has been added
to SQL Server that reduces CPU usage by a large amount. Batch mode execution is
closely integrated with, and optimized around, the columnstore storage format.

Review the following example to understand how to create a clustered columnstore
index. This example creates a table as a heap and then converts the table to a clustered
columnstore index. This changes the storage for the entire table from rowstore to
columnstore:

CREATE TABLE T1(

 ProductKey [int] NOT NULL,

 OrderDateKey [int] NOT NULL,

 DueDateKey [int] NOT NULL,

 ShipDateKey [int] NOT NULL);

GO

CREATE CLUSTERED COLUMNSTORE INDEX cci_T1 ON T1;

GO

Note

Review the following documentation to learn more about using
clustered columnstore indexes: https://docs.microsoft.com/en-us/sql/
database-engine/using-clustered-columnstore-indexes?view=sql-server-
2014&viewFallbackFrom=sql-server-ver15.

For a deeper understanding of columnstore indexes, read the following article:
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-
nonclustered-indexes-described?view=sql-server-ver15.

https://docs.microsoft.com/en-us/sql/database-engine/using-clustered-columnstore-indexes?view=sql-server-2014&viewFallbackFrom=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/using-clustered-columnstore-indexes?view=sql-server-2014&viewFallbackFrom=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/using-clustered-columnstore-indexes?view=sql-server-2014&viewFallbackFrom=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15

324 | Data Warehousing

Partitioning
Beginning with the release of SQL Server 2005, SQL Server has supported table and
index partitioning, which allows the data of partitioned tables and indexes to be spread
across multiple filegroups in a database. The data is partitioned horizontally so that
groups of rows are mapped into partitions using a partition function that defines the
range of values in a partition. Partitions can also be stored on separate filegroups
to further increase the scalability of a workload, improve performance, and ease
maintenance operations:

Figure 11.1: A well-designed partition strategy can improve data loading and querying performance
while also simplifying the maintenance of large volumes of data

Partitioning large tables or indexes can provide benefits that can improve manageability
and increase performance, especially in the case of data warehouse workloads that
often deal with large volumes of data.

Transferring or accessing subsets of data quickly and efficiently is enabled while
maintaining the integrity of a data collection. For example, an operation such as loading
data into a large fact table in a data warehouse may take only seconds compared to
minutes or hours if the data was not partitioned. Also, archiving or deleting old data as
new data is loaded into a large fact table becomes a straightforward operation without
affecting the performance or availability of the greater data collection.

Online index management | 325

You can perform maintenance operations on one or more partitions quickly. For
example, you may choose to rebuild a single partition of a clustered columnstore index
to improve compression rather than rebuilding the clustered columnstore index for the
entire table.

You can improve query performance based on the types of queries you frequently run.
Partitioning a table on a column commonly used in equi-joins and in WHERE clauses can
increase query performance in a couple of different ways. First, the query optimizer
may be able to eliminate certain partitions from being queried when the WHERE clause
is used to filter the data using the partitioning column of the table. Also, the query
optimizer can process equi-join queries between two or more partitioned tables faster
when the partitioning columns are the same as the columns on which the tables are
joined.

Note

It is important to validate that your partitioning strategy is effective and improves
performance and manageability. Too many partitions can hurt performance and
too few partitions may not provide a significant benefit, for example.

Read the following article for an overview of partitioning, the components and
concepts, and performance guidelines: https://docs.microsoft.com/en-us/sql/
relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-
ver15.

See the following article to learn how to create partition functions and partition
schemes and then apply them to a table and index: https://docs.microsoft.
com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-
indexes?view=sql-server-ver15.

Online index management
SQL Server 2019 introduces resumable online index creation in addition to rebuilding.
The online option supports concurrent user access to the underlying table or index
data during online index operations. Online index operations are recommended for
business environments that require concurrent user activity during index operations
for workloads that are online 24 hours a day and 7 days a week.

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-indexes?view=sql-server-ver15

326 | Data Warehousing

The ONLINE option is available in the following T-SQL statements:

•	 CREATE INDEX

•	 ALTER INDEX

•	 DROP INDEX

•	 ALTER TABLE (to add or drop UNIQUE or PRIMARY KEY constraints with the CLUSTERED
index option)

When creating or rebuilding an index and the ONLINE option is set to ON, the
underlying objects are available for querying and data modification. It is also possible to
rebuild part of an index on a single partition.

Enabling online DML processing

To perform online index operations, the user requires ALTER permission on the table or
view.

Online DML operations for indexes can be enabled using SQL Server Management
Studio, Azure Data Studio, or T-SQL.

Using SQL Server Management Studio, complete the following steps to enable online
DML operations for a given index:

1.	 Open Object Explorer and navigate to the table that contains the index for which
you need to enable online index operations.

2.	 Expand the Indexes folder beneath the table on which you need to enable online
index operations.

3.	 Expand the Indexes folder and right-click the desired index. Click Properties.

4.	 Under Select a page, select Options.

5.	 Select Allow online DML processing and then select True.

Online index management | 327

6.	 Click OK:

Figure 11.2: Enabling online DML processing with SQL Server Management Studio

To enable online DML processing for a given index using T-SQL, specify the ONLINE =
ON argument as shown in the following example of rebuilding a clustered columnstore
index:

USE [AdventureWorksDW2017]

GO

ALTER INDEX [cci_FactResellerSales] ON [dbo].[FactResellerSales]

REBUILD PARTITION = ALL WITH (ONLINE = ON)

Resuming online index create or rebuild

SQL Server 2019 adds pausing and resuming an index create or rebuild operation
while online. Resumable online index create allows you to create an index, pause, and
then resume later where the operation was paused or failed, instead of restarting the
operation from the beginning.

328 | Data Warehousing

Being able to pause and resume an index create or rebuild at a later date or time could
be very useful in the following scenarios:

•	 An unexpected, high-priority task surfaces that requires more resources.

•	 The data warehouse maintenance window closes before the index create or
rebuild completes.

•	 A failover occurs for the data warehouse database.

•	 A database runs out of disk space.

•	 There is a need to reduce long-running transactions to improve log space
management.

Note

Clustered columnstore indexes can be created or rebuilt online but do not support
pausing and resuming create and rebuild operations.

The RESUMABLE argument is specified in the DDL of the index create or rebuild statement
rather than in the metadata of the desired index, as shown in the following example. To
specify a DDL operation as resumable, the ONLINE argument must also be set to ON:

USE [AdventureWorks2017]

GO

CREATE UNIQUE NONCLUSTERED INDEX [AK_Employee_LoginID] ON [HumanResources].
[Employee]

(

  [LoginID] ASC

)WITH (ONLINE = ON, RESUMABLE = ON) ON [PRIMARY]

GO

To pause an index create or rebuild operation, either stop the ongoing command, kill
the session using the KILL <session_id> command, or execute the ALTER INDEX PAUSE
command as shown in the following example:

USE [AdventureWorks2017]

GO

ALTER INDEX [AK_Employee_LoginID]

ON [HumanResources].[Employee] PAUSE

Online index management | 329

Re-executing the original CREATE or REBUILD statement automatically resumes a paused
index create operation.

To abort the index operation, use the ABORT command.

Build and rebuild online clustered columnstore indexes

Clustered columnstore indexes are the standard in SQL Server for storing and querying
large data warehouse fact tables. In previous versions of SQL Server, creating clustered
columnstore indexes was an offline process. SQL Server 2019 now supports creating
and rebuilding a clustered columnstore index while online. This new feature means
that workloads will not be blocked, and all modifications made to data are transparently
added to the target columnstore table. This is ideal for business workloads that require
near-100% availability.

Review the following examples to create and rebuild a clustered columnstore index
online:

USE [AdventureWorksDW2017]

GO

CREATE CLUSTERED COLUMNSTORE INDEX cci_FactResellerSales

ON [dbo].[FactResellerSales]

WITH (ONLINE = ON);

USE [AdventureWorksDW2017]

GO

ALTER INDEX cci_FactResellerSales

ON [dbo].[FactResellerSales]

REBUILD WITH (ONLINE = ON);

Using ALTER DATABASE SCOPE CONFIGURATION

ALTER DATABASE SCOPE CONFIGURATION enables several database configuration settings
at the individual database level. ALTER DATABASE SCOPE CONFIGURATION was introduced
in SQL Server 2016 but now also supports the ONLINE and RESUMABLE arguments. This
feature supports defining the default behavior at the database level rather than for each
individual statement.

Use ALTER DATABASE SCOPE CONFIGURATION to set the default behavior for online and
resumable operations to either OFF, FAIL_UNSUPPORTED, or WHEN_SUPPORTED.

330 | Data Warehousing

OFF

This value is the default behavior. This value means that online and resumable
operations will not be online or resumable unless specified in the statement.

FAIL_UNSUPPORTED

This value elevates all supported DDL operations to ONLINE or RESUMABLE. Operations
that do not support online or resumable execution will fail and throw a warning.

WHEN_SUPPORTED

This value elevates all DDL operations to ONLINE or RESUMABLE. Operations that do not
support online or resumable execution will be run offline.

View the following example to understand how to set the default behavior for
configuring the database engine to automatically elevate supported operations to
ONLINE:

USE [AdventureWorks2017]

GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_ONLINE = WHEN_SUPPORTED

View the following example to understand how to set the default behavior for
configuring the Database Engine to automatically elevate supported operations to
RESUMABLE:

USE [AdventureWorks2017]

GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_RESUMABLE = FAIL_UNSUPPORTED

Note

For more information, review the following documentation on guidelines for online
index operations: https://docs.microsoft.com/en-us/sql/relational-databases/
indexes/guidelines-for-online-index-operations?view=sql-server-ver15.

Creating and maintaining statistics
SQL Server's Query Optimizer uses statistics to create query plans that improve query
performance. Statistics contain statistical information regarding the distribution of
values in one or more columns of a table or indexed view. The Query Optimizer uses
statistical information to determine the number of rows in a query result, which enables
the Query Optimizer to determine an optimal query plan. As such, up-to-date statistics
are crucial for generating an optimal query plan and to ensure excellent performance.

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations?view=sql-server-ver15

Creating and maintaining statistics | 331

Automatically managing statistics

The SQL Server Query Optimizer will automatically create statistics in two different
ways:

•	 When an index is created, the Query Optimizer will create statistics on the key
column(s) of the index.

•	 The Query Optimizer will create statistics in query predicates when the AUTO_
CREATE_STATISTICS option is set to ON.

But there are three options that can be set to determine when statistics are created and
updated.

The AUTO_CREATE_STATISTICS option

When the AUTO_CREATE_STATISTICS option is set to ON, the query optimizer creates
statistics for individual columns in query predicates to improve query plans and query
performance. This happens when the Query Optimizer compiles a query.

The AUTO_UPDATE_STATISTICS option

When the AUTO_UPDATE_STATICS option is set to ON, the Query Optimizer updates
statistics when they are used by a query or when they could be out of date. Statistics
become out of date when database operations alter the distribution of data in a table or
indexed view. This could happen after an insert, update, or delete operation. The Query
Optimizer determines whether statistics are out of date by counting the number of data
modifications since the last statistics update.

The AUTO_UPDATE_STATISTICS_ASYNC option

The AUTO_UPDATE_STATISTICS_ASYNC option determines whether the Query Optimizer
uses synchronous or asynchronous statistics updates. This option applies to statistics
objects created for indexes, single columns in query predicates, and statistics
created with the CREATE STATISTICS statement. The default value for the AUTO_UPDATE_
STATISTICS_ASYNC option is OFF, which means that the Query Optimizer updates
statistics asynchronously.

Note

To set AUTO_UPDATE_STASTICS_ASYNC to ON, both the AUTO_CREATE_STATISTICS
and AUTO_UPDATE_STATISTICS options should be set to ON.

332 | Data Warehousing

Statistics for columnstore indexes
Because the characteristics of a data warehouse workload are typically very different
from those of a transaction workload, the methodology you follow for the maintenance
of statistics will depend on the characteristics of your data. As you develop your plan,
consider the following guidelines:

•	 For columns that contain static values, such as certain dimension tables, reduce
the frequency of updates to the statistics.

•	 An ascending key column for which new values are added frequently, such as a
transaction date or an order number, likely requires more frequent updates to the
statistics. Consider updating the related statistics more often.

•	 Consider using asynchronous statistics for workloads, such as data warehouses,
that frequently execute the same query or similar queries. Query response times
could be more predictable because the Query Optimizer can execute queries
without waiting for up-to-date statistics.

•	 Consider using synchronous statistics if your data warehouse ETL process
includes truncating tables or bulk updates to a large percentage of rows. This will
ensure that statistics are up to date before executing queries.

Modern data warehouse patterns in Azure
In today's world, modern enterprises have recognized that all data represents hidden
value waiting to be unlocked by their organization. Data exists in all shapes, sizes, and
formats, and often the differentiating factor between the most efficient and successful
companies and less successful companies is how well those companies use data to drive
intelligent decisions. More companies are recognizing that data and intelligence have
little value if we can't properly manage it.

Today organizations need to be able to ingest large volumes of data into big data
stores from a variety of data sources. Once in big data stores, Hadoop, Spark, and
machine learning pipelines prepare and train the data. Once the data is ready for
complex analysis, the data is loaded into the data warehouse to be accessed by business
intelligence tools, such as Power BI or Excel. Azure provides the framework and
ecosystem for designing and building cutting-edge big data and advanced analytics
platforms. In this section, we're going to discuss technologies such as Azure SQL Data
Warehouse, Azure Data Factory, Azure Databricks, Azure Data Lake, and Power BI and
how these cloud technologies fit into modern data warehouse design patterns, offering
limitless scale and flexibility.

Introduction to Azure SQL Data Warehouse | 333

Introduction to Azure SQL Data Warehouse
Azure SQL Data Warehouse democratizes massively parallel processing (MPP)
capabilities and enables organizations of all sizes to take advantage of petabyte-
scale data warehouse processing on demand. SQL Data Warehouse is a cloud-based
enterprise data warehouse specifically built and optimized for data warehouse
workloads for systems with small to very large amounts of data. Because SQL Data
Warehouse leverages distributed compute and storage resources, SQL Data Warehouse
allows queries to scale out and take advantage of parallel processing for large, complex,
analytical queries.

Azure SQL Data Warehouse includes four components that make up the architecture, as
shown in Figure 11.3:

Figure 11.3: SQL Data Warehouse includes four main components

Control node

The control node is an Azure SQL database that coordinates data movement and
computational workloads in a data warehouse. The control node receives the T-SQL
queries and breaks them into units of work, which are parallelized across the compute
nodes. No data is stored on the compute node. The compute node consists of metadata
and statistics of the data warehouse.

334 | Data Warehousing

Compute nodes

The compute nodes are separate Azure SQL databases that provide the computing
horsepower for Azure SQL Data Warehouse. While the control node distributes data
across compute nodes when loading new data into the data warehouse, the compute
nodes return partial query results to the control node for final assembly of the query
results. The number of compute nodes ranges from 1 to 60 and is determined by the
service level objective (SLO) selected for the data warehouse.

The SLO is a scalability setting that determines the cost and performance level of your
Azure SQL Data Warehouse instance. Azure SQL Data Warehouse Gen 1 service levels
are measured in data warehouse units (DWUs) and SQL Data Warehouse Gen 2 service
levels are measured in compute data warehouse units (cDWUs). DWUs and cDWUs
represent an abstract and normalized way to measure CPU, I/O, and memory. Changing
the SLO of your SQL Data Warehouse instance represents a change to the DWU or
cDWU of the data warehouse, altering the performance and cost of the data warehouse.

Storage

The data is stored and managed by Azure Storage. The data is sharded into distributions
to optimize the performance of the system. You can choose the sharding pattern to use
to distribute the data when you define the table using either a hash, round-robin, or
replication sharding pattern. Because the storage is decoupled from the compute, all
data is persisted in storage regardless of how you scale or pause compute resources,
allowing you to only pay for compute resources when in use.

Data movement services (DMSes)

DMSes coordinate data movement between nodes as required to respond to queries.
DMSes work transparently as background services.

Best practices for working with Azure SQL Data Warehouse
Following the recommended best practices for working with Azure SQL Data
Warehouse will ensure that your applications experience excellent performance and
that your users will have a positive experience.

Best practices for working with Azure SQL Data Warehouse | 335

Reduce costs by scaling up and down

Because Azure SQL Data Warehouse separates storage from compute resources,
scaling compute to meet performance and availability demands independently from
data storage allows you to optimize your data warehouse workloads for maximum cost
savings. If you don't need to use your data warehouse during a specific time frame, you
can save compute costs by pausing compute resources.

Note

To learn more about scale-out steps, view the following documentation on
managing compute: https://docs.microsoft.com/en-us/azure/sql-data-warehouse/
sql-data-warehouse-manage-compute-overview.

Use PolyBase to load data quickly

SQL Data Warehouse supports loading and exporting data using a variety of tools
including Azure Data Factory, SSIS, PolyBase, and BCP. But when loading or exporting
large amounts of data or fast performance is required, PolyBase is the best choice.
Because PolyBase is specifically designed to leverage the MPP architecture of SQL Data
Warehouse, exporting and loading data will be much faster than any other tool.

Note

To learn more about the best practices for loading data in Azure SQL Data
Warehouse, view the following documentation: https://docs.microsoft.com/en-us/
azure/sql-data-warehouse/guidance-for-loading-data.

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-manage-compute-overview
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-manage-compute-overview
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/guidance-for-loading-data
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/guidance-for-loading-data

336 | Data Warehousing

Manage the distributions of data

A distribution is the basic unit of storage and processing for parallel queries that run on
distributed data. When SQL Data Warehouse runs a query, the work is divided into 60
smaller queries that run in parallel to access the data, which is distributed using one of
three methods:

•	 Hash distribution: To shard data into a hash-distributed table, SQL Data
Warehouse uses a hash function to assign each row to one distribution. The
column to be used as the distribution column is determined in the table
definition. A hash distribution can deliver higher query performance for joins and
aggregations on large tables. For example, hash distributing two large fact tables
on the same key values that are commonly used in joins will eliminate the need for
data movement between compute nodes.

•	 Round-robin distribution: By default, tables use round-robin distribution. This
makes it easy for users to get started creating tables without having to decide how
their tables should be distributed. Round-robin tables may perform sufficiently
for some workloads, but in most cases hash distributing a table based on a
column that is commonly used in large joins or aggregation will provide optimal
performance.

•	 Replicated tables: A replicated table provides the fastest query performance
for small tables. A table that is replicated creates a full copy of the table on each
compute node. Replicating small tables commonly used in lookups, such as a date
table, can eliminate the need for data movement. Be aware that extra storage is
required for replicating a table and there is additional overhead incurred when
writing data to a replicated table. Replicating large tables is not ideal.

Note

Read the following documentation for guidance on designing distributed tables
in Azure SQL Data Warehouse: https://docs.microsoft.com/en-us/azure/sql-data-
warehouse/sql-data-warehouse-tables-distribute.

Do not over-partition data

Because of the distributed nature of Azure SQL Data Warehouse, data is partitioned
into 60 databases. This means that if you create a table with 100 partitions, this results
in 6,000 partitions. A high-granularity partitioning strategy that worked well on SQL
Server may not work well with SQL Data Warehouse and may, in fact, hurt query
performance.

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-distribute
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-distribute

Using Azure Data Factory | 337

Also, keep in mind that too many partitions can hurt the performance of a clustered
columnstore index. Remember that rows in a table with a clustered columnstore
index generally will not push data into a compressed columnstore segment until there
are more than 1 million rows per table per partition. Having too many partitions may
prevent your workload from benefiting from a clustered columnstore index.

Note

Read the following documentation to learn more about partitioning tables in
Azure SQL Data Warehouse: https://docs.microsoft.com/en-us/azure/sql-data-
warehouse/sql-data-warehouse-tables-partition.

View the following article to understand the possible causes of poor columnstore
index quality: https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-
data-warehouse-tables-index#causes-of-poor-columnstore-index-quality.

Learn more about best practices for Azure SQL Data Warehouse by reading the
following article: https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-
data-warehouse-best-practices.

Using Azure Data Factory
Azure Data Factory (ADF) is a highly available, fault-tolerant, cloud-based data
integration service that automates the movement and transformation of data assets
between your on-premises network and Azure data services based on a defined
schedule or trigger. ADF supports the ingestion of a large variety of data sources,
including structured or unstructured data sources, which makes ADF ideal for modern
data warehouse implementations in Azure. Because ADF is natively integrated with
other Azure Data Services, such as Azure SQL Data Warehouse, Azure Databricks, and
Azure Storage, using ADF to automate data movement and transformation across a
modern data ecosystem built in Azure becomes very easy. Azure Data Factory is the
go-to data movement tool for automating the load of Azure SQL Data Warehouse.

New capabilities in ADF

The latest enhancements to ADF (ADF v2) were made generally available in June 2018.
ADF v2 introduced a host of new capabilities.

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-partition
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-partition
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-index#causes-of-poor-columnstore-index-quality
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-index#causes-of-poor-columnstore-index-quality
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-best-practices
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-best-practices

338 | Data Warehousing

Control flow

ADF includes control flow data pipeline constructs such as branching, looping,
conditional execution, and parameterization to allow you to orchestrate complex data
integration jobs that are flexible and reusable.

Code-free designing

ADF now supports designing, managing, maintaining, and monitoring your pipelines
right in your browser. Native integration with Git repos in Visual Studio Team Services
allows your development teams to collaborate on data pipelines as well as build and
release management and automation.

Iterative pipeline development

The ADF design environment also includes the ability to iteratively develop pipelines
and debug your pipelines interactively with iterative debugging built in.

Flexible scheduling

Schedule pipelines on a wall-clock scheduler or event-based triggers, or with tumbling
window schedules.

Lift and shift SSIS packages into ADF

ADF provides integration runtime support that allows you to lift and shift your existing
on-premises SSIS packages into the cloud by using ADF. There, you can then execute,
schedule, and monitor your SSIS package executions in the cloud.

HDInsight Spark on demand and Azure Databricks

ADF now supports building ETL pipelines in the cloud to transform data at scale with
Spark using HDInsight on-demand clusters or Azure Databricks notebooks.

SDK support

SDK support has been added and updated for Python, .NET, REST, and PowerShell to
build custom applications with ADF.

Understanding ADF

ADF is composed of several key components, which serve as the platform on which you
can build data-driven workflows with steps to move and transform data.

Pipeline

A pipeline is a logical grouping of activities that performs a unit of work. The activities
in a pipeline perform a task, such as copying data from an on-premises SQL Server
environment, transforming the data with a Mapping Data Flow activity, and then loading
the data into an Azure SQL Data Warehouse instance.

Using Azure Data Factory | 339

Activity

An activity represents a step in a pipeline. ADF supports data movement activities, data
transformation activities, and control activities. For example, Copy Activity can be used
to copy data from one data store to another data store.

Datasets

A dataset represents data structures within data stores, which simply point to or
reference the data you want to use in your activities as inputs or outputs. For example,
a dataset can be tables that exist in a database or files in Azure Blob storage.

Linked services

A linked service functions as a connection string and defines the connection
information required by ADF for connecting to an external resource. Linked services are
used for two purposes in ADF:

•	 To represent a data store, such as an on-premises SQL Server database, Oracle
database, file share, or Azure Blob storage account

•	 To represent a compute resource that can host the execution of an activity, such
as a Hive query on an HDInsight Hadoop cluster or a stored procedure on a SQL
Server database

The following diagram illustrates the relationships between a pipeline, activity, dataset,
and linked service in ADF:

Figure 11.4: A pipeline is a logical grouping of activities that produces or consumes a dataset and is run
on a linked service

340 | Data Warehousing

Copying data to Azure SQL Data Warehouse
To copy data from on-premises to Azure data stores, we can use Copy Activity. Copy
Activity supports a wide variety of data sources including SQL Server, Oracle, MySQL,
Salesforce, and files.

Note

To find a complete list of supported data sources and destinations for Copy
Activity, refer to the following documentation: https://docs.microsoft.com/en-us/
azure/data-factory/v1/data-factory-data-movement-activities.

For example, you could copy data from an on-premises SQL Server instance to Azure
SQL Data Warehouse using the following steps:

1.	 First, open the Azure portal (https://portal.azure.com). Then, click Create a
resource in the top left. In the search bar, type "Data Factory" and press Enter.
Select the Data Factory resource and then click Create. Complete the form to
create a new Data Factory instance. Enter a globally unique name and select the
subscription. Select whether you'd like to create a new resource group or use an
existing resource group. Ensure the version is set to V2 and select the geographic
location for the Data Factory instance. Finally, click Create.

2.	 When the new Data Factory instance has finished provisioning, open the Data
Factory blade by selecting the newly created Data Factory. Click the Author &
Monitor button on the Data Factory Overview blade.

3.	 ADF features many templates for creating pipelines that can perform a variety
of tasks including copying data from Google BigQuery to Azure Data Lake
Store, performing ETL with Azure Databricks, loading a type 2 slowly changing
dimension, and more. For this example, we will use a predefined template to copy
data from an on-premises SQL Server to Azure SQL Data Warehouse. Click the
Create pipeline from template button:

https://docs.microsoft.com/en-us/azure/data-factory/v1/data-factory-data-movement-activities
https://docs.microsoft.com/en-us/azure/data-factory/v1/data-factory-data-movement-activities
https://portal.azure.com

Copying data to Azure SQL Data Warehouse | 341

Figure 11.5: Create a Data Factory pipeline from a template

4.	 Once the Data Factory Editor window opens, search SQL Data Warehouse in the
Filter text box. Click the template to Copy data from on-premise SQL Server to
SQL Data Warehouse. The template requires you to complete the user input for
creating the pipeline template. You must define the DataSourceConnection and
DataDestinationConnection inputs.

5.	 In the DataSourceConnection input, select an existing linked service to use or
define a new linked service by clicking + New. If you're creating a new linked
service, enter a name and description for the linked service. In the drop-down box
under Connect via integration runtime, click + New. In order to allow ADF to query
an on-premises SQL Server, we must configure a self-hosted integration runtime
in your on-premises network to facilitate the connection. Click the tile labeled
Self-Hosted. Enter a name for the self-hosted integration runtime and click Next.
You can use Option 1: Express setup to configure the self-hosted integration
runtime on your current computer or you can use Option 2: Manual setup to
download and install the integration runtime on a separate computer. When you
have successfully configured the self-hosted integration runtime, click Finish.

6.	 With the self-hosted integration runtime configured, you can now finish creating
the new linked service. Enter the server name, database name, authentication
type, username, and password. Click Finish.

342 | Data Warehousing

7.	 Next, you must define the Azure SQL Data Warehouse instance you wish to use in
the DataDestinationConnection input. If you have an existing SQL Data Warehouse
instance you've already configured as a linked service and would like to use, select
it now. If you need to create a linked service for a new Azure SQL Data Warehouse
instance, click + New. Enter the name and description for the new linked service.
In the drop-down box under Connect via integration runtime, ensure you select
AutoResolveIntegrationRuntime. Select the Azure subscription, server name,
database name, authentication type, username, and password for the Azure SQL
Data Warehouse instance you selected. Click Finish. Finally, on the template
screen click Use this template:

Note

To allow ADF to connect to Azure SQL Data Warehouse, you must enable Allow
access to Azure services in the SQL Server firewall settings for your Azure SQL Data
Warehouse instance.

8.	 With the template now created, we simply need to update Datasets, Datasource1,
and DataDestination1, which can be found in the Factory Resources blade under
Datasets. Click DataSource1 to select the dataset. Go to the Connection tab in
DataSource1 and use the drop-down list next to Table and select the table you
wish to copy to Azure SQL Data Warehouse. Then go to the Schema tab and click
Import schema to populate the columns and data types found in the table.

9.	 To populate the schema for DataDestination1, complete the same steps previously
mentioned. Once you've populated the schemas for both the DataSource1 and
DataDestination1 datasets, navigate to the pipeline under Factory Resources and
click on Copy Activity in the design canvas. First, navigate to the Sink tab for
Copy Activity and disable the Allow Polybase option. Then, go to the Mapping tab
and ensure that your source columns are correctly mapped to the destination
columns. On the Settings tab, disable Enable staging. Click the Publish All button
in the top left. To test your pipeline, click the Debug button in the Pipeline editor
window.

10.	 If you need to schedule the pipeline to automatically execute on a recurring basis,
click the Triggers button at the bottom of the Factory Resources blade. You have
the option to define three different types of triggers.

Schedule: A trigger that invokes a pipeline on a wall-clock schedule. For example,
use this trigger when you need a pipeline to execute every day at 3 PM.

Hosting SSIS packages in ADF | 343

Tumbling Window: A trigger that operates on a periodic interval, while also
retaining state. For example, use a Tumbling Window trigger when you wish to
execute a pipeline once every 15 minutes.

Event: A trigger that responds to an event. For example, use an event-based
trigger when you need to execute a pipeline when a file arrives or is deleted in
Azure Blob storage.

Note

For more information on executing ADF pipelines with a Trigger, view the following
article: https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-
execution-triggers.

Hosting SSIS packages in ADF
ADF supports hosting SSIS packages on dedicated compute resources, which means
you can now lift and shift existing SSIS workloads to Azure.

To support the execution of SSIS packages in Azure, you must first provision an Azure-
SSIS Integration Runtime (IR) to natively execute SSIS packages. The Azure-SSIS IR is a
fully managed cluster of Azure virtual machines (VMs) dedicated to running your SSIS
packages. Your Azure-SSIS IR can be scaled up by specifying the node size and can be
scaled out by specifying the number of nodes in the cluster. You can also manage the
cost of running the Azure-SSIS IR by stopping and starting the Azure-SSIS IR based on
your workload demands.

Optionally, you can use Azure SQL Database server with a virtual network service
endpoint or an Azure SQL Database managed instance to host the SSIS catalog
database. A prerequisite for using ADF-hosted SSIS packages to query data sources
within your on-premises network is to attach the Azure-SSIS IR to an Azure virtual
network and configure virtual network permissions/settings as necessary.

SSIS packages hosted in ADF can be executed by creating an ADF pipeline featuring
an Execute SSIS Package activity. This will allow you to integrate your SSIS packages
hosted in ADF within your ADF pipelines.

Alternatively, SSIS packages hosted in ADF can also be executed by using a stored
procedure activity within an ADF pipeline.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-execution-triggers
https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-execution-triggers

344 | Data Warehousing

The SSIS Feature Pack for Azure is an extension that provides a variety of components
for building SSIS packages to connect to Azure services, transfering data between Azure
and on-premises data sources, and processing data stored in Azure. Download the
SSIS Feature Pack for Azure here: https://docs.microsoft.com/en-us/sql/integration-
services/azure-feature-pack-for-integration-services-ssis?view=sql-server-2017.

For more information about hosting and running SSIS package in ADF, see the following
articles:

•	 How to deploy SSIS packages to Azure, https://docs.microsoft.com/en-us/azure/
data-factory/tutorial-create-azure-ssis-runtime-portal: This article provides
step-by-step instructions to create an Azure-SSIS IR and uses an Azure SQL
database to host the SSIS catalog.

•	 How to create an Azure-SSIS integration runtime, https://docs.microsoft.com/
en-us/azure/data-factory/create-azure-ssis-integration-runtime: This article
expands on the tutorial and provides instructions on using Azure SQL Database
managed instance and joining the IR to a virtual network.

•	 How to monitor an Azure-SSIS IR, https://docs.microsoft.com/en-us/azure/
data-factory/monitor-integration-runtime#azure-ssis-integration-runtime:
This article shows you how to retrieve information about an Azure-SSIS IR and
descriptions of statuses in the returned information.

•	 How to manage an Azure-SSIS IR, https://docs.microsoft.com/en-us/azure/data-
factory/manage-azure-ssis-integration-runtime: This article shows you how to
stop, start, or remove an Azure-SSIS IR.

•	 How to join an Azure-SSIS IR to a virtual network, https://docs.microsoft.com/
en-us/azure/data-factory/join-azure-ssis-integration-runtime-virtual-network:
This article provides conceptual information about joining an Azure-SSIS IR to an
Azure virtual network.

Azure Data Lake Storage
Today, organizations are recognizing the value of all types of data and being able to
effectively leverage their data assets. Many organizations are seeking to understand
and analyze all data assets regardless of the size, shape, or perceived value of the data.
Because of this, many organizations are adopting data lake architectures where data
of all types is stored for future analysis. Azure Data Lake Storage is the foundation for
building data lake architectures to store data of any shape, any volume, and any velocity
in the cloud while defining the data schema at the time of read.

https://docs.microsoft.com/en-us/sql/integration-services/azure-feature-pack-for-integration-services-ssis?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/integration-services/azure-feature-pack-for-integration-services-ssis?view=sql-server-2017
https://docs.microsoft.com/en-us/azure/data-factory/tutorial-create-azure-ssis-runtime-portal
https://docs.microsoft.com/en-us/azure/data-factory/tutorial-create-azure-ssis-runtime-portal
https://docs.microsoft.com/en-us/azure/data-factory/create-azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/create-azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/monitor-integration-runtime#azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/monitor-integration-runtime#azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/manage-azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/manage-azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/join-azure-ssis-integration-runtime-virtual-network
https://docs.microsoft.com/en-us/azure/data-factory/join-azure-ssis-integration-runtime-virtual-network

Azure Data Lake Storage | 345

Azure Data Lake Storage and Azure SQL Data Warehouse are designed to work together
to enable organizations to easily build and integrate their data lake and data warehouse
environments seamlessly. Datasets stored in Azure Data Lake Storage can be easily
queried for loading or analysis using Azure SQL Data Warehouse's PolyBase technology,
as mentioned earlier in the chapter.

Note

Using Azure Data Lake Storage and PolyBase is the recommended best practice for
loading and/or exporting large volumes of data in Azure SQL Data Warehouse.

Key features of Azure Data Lake Storage Gen2

Azure Data Lake Storage Gen2 (ADLS Gen2), the latest release of Azure Data Lake
Storage, offers several new enhancements and capabilities over the previous version of
Azure Data Lake Storage.

Hadoop-compatible access

ADLS Gen2 supports management and accessing data as you would with the Hadoop
Distributed File System. The Azure Blob Filesystem (ABFS) driver is available for use
within Apache Hadoop environments, including Azure SQL Data Warehouse and Azure
Databricks, to access data stored in ADLS Gen2.

A superset of POSIX permissions

ADLS Gen2 features an access control model that supports both Azure role-based
access control (RBAC) and POSIX-like access control lists (ACLs). In addition, these
settings can be configured through Azure Storage Explorer or through frameworks
such as Hive and Spark.

Cost-effective

ADLS Gen2 offers low-cost storage capacity and transactions. As data transitions
through its complete life cycle, billing rates change, keeping costs to a minimum via
built-in features such as the Azure Blob storage life cycle. Azure Blob storage life cycle
management offers a rule-based policy that allows you to transition from blob to cooler
storage to optimize for performance and cost, delete blobs at the end of their life
cycle, define rules to be once per day at the storage account level, and apply rules to
containers or a subset of blobs.

346 | Data Warehousing

Optimized driver

The ABFS driver is optimized specifically for big data analytics, making Azure Data Lake
Storage the go-to storage platform for advanced analytics in Azure.

Note

View the following tutorials to learn how to get started using Azure Data Lake
Storage:

How to extract, transform, and load data by using Azure Databricks, https://docs.
microsoft.com/en-us/azure/azure-databricks/databricks-extract-load-sql-data-
warehouse

How to access Data Lake Storage with Databricks using Spark, https://docs.
microsoft.com/en-us/azure/storage/blobs/data-lake-storage-use-databricks-spark

How to extract, transform, and load data with Apache Hive on Azure HDInsight,
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-tutorial-
extract-transform-load-hive

Azure Databricks
Azure Databricks is a fast, easy, and collaborative Apache Spark-based analytics service
optimized for Azure. Databricks was designed with the founders of Apache Spark and
is tightly integrated with Azure to provide on-click setup, streamlined workflows, and
an interactive workspace that enables collaboration between data scientists, engineers,
and analysts.

Azure Databricks is tightly integrated with Azure data services such as SQL Data
Warehouse, Data Lake Storage, Cosmos DB, SQL Database, Event Hubs, and Power BI.
Databricks is ideal for working with structured or unstructured data, real-time data
processing and analysis for analytical and interactive applications, machine learning and
predictive analytics, graph computation, performing ETL operations, and other types
of data engineering. Through a collaborative and integrated workspace experience,
Azure Databricks eases the process of exploring data, visualizing data with interactive
dashboards in just a few clicks, and documenting your progress in notebooks in R,
Python, Scala, or SQL.

https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-extract-load-sql-data-warehouse
https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-extract-load-sql-data-warehouse
https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-extract-load-sql-data-warehouse
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-use-databricks-spark
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-use-databricks-spark
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-tutorial-extract-transform-load-hive
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-tutorial-extract-transform-load-hive

Working with streaming data in Azure Stream Analytics | 347

Note

With the serverless option, Azure Databricks abstracts the infrastructure
complexity and the need for specialized expertise to set up and configure your
data infrastructure.

Azure Databricks is a very flexible analytics platform but is especially useful in the
following scenarios related to data warehouse applications leveraging Azure SQL Data
Warehouse:

•	 Performing ETL operations for the purpose of cleansing and loading the data
warehouse

•	 Integrating machine learning pipelines into your ETL process

•	 Ad hoc data exploration and analysis of the data warehouse

•	 Real-time data analysis in a real-time data warehousing workload

Note

Learning more about Azure Databricks by reviewing the following resources and
tutorials:

Extracting, transforming, and loading data into Azure SQL Data Warehouse by
using Azure Databricks, https://docs.microsoft.com/en-us/azure/azure-databricks/
databricks-extract-load-sql-data-warehouse

Analyze near real-time streaming data with Azure Databricks, https://docs.
microsoft.com/en-us/azure/azure-databricks/databricks-stream-from-eventhubs

Working with streaming data in Azure Stream Analytics
Azure Stream Analytics is an event-processing engine that allows you to analyze
large volumes on streaming data in flight. Patterns and relationships can be identified
in information extracted from a variety of input sources including devices, sensors,
websites, social media feeds, and applications. The insights discovered can be used to
trigger other actions as part of a workflow including creating alerts, feeding information
to a reporting tool, or storing transformed data for later use.

https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-extract-load-sql-data-warehouse
https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-extract-load-sql-data-warehouse
https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-stream-from-eventhubs
https://docs.microsoft.com/en-us/azure/azure-databricks/databricks-stream-from-eventhubs

348 | Data Warehousing

Stream Analytics is ideal in scenarios related to real-time data warehousing. When used
with event processing services such as Azure Event Hubs or Azure IoT Hub, Stream
Analytics can be used to perform data cleansing, data reduction, and data store and
forward needs. Stream Analytics can load data directly to Azure SQL Data Warehouse
using the SQL output adapter, but throughput can be improved some increased latency
by using PolyBase to read the streaming data from Azure Blob storage, as illustrated in
Figure 11.6:

Figure 11.6: Using Azure Stream Analytics for real-time data warehousing scenarios

In Figure 11.7 pattern, Azure Stream Analytics is used as a near real-time ETL engine.
Newly arriving events are continuously transformed and stored in an Azure Blob storage
container portioned by a date and time. The data stored in Azure Blob storage can then
be loaded directly into Azure SQL Data Warehouse using PolyBase.

Note

Creating a Stream Analytics job by using the Azure portal, https://docs.microsoft.
com/en-us/azure/stream-analytics/stream-analytics-quick-create-portal

Azure Stream Analytics and custom blob output partitioning, https://docs.
microsoft.com/en-us/azure/stream-analytics/stream-analytics-custom-path-
patterns-blob-storage-output

Analyzing phone call data with Stream Analytics and visualizing results in Power
BI, https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-
manage-job

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-quick-create-portal
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-quick-create-portal
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-custom-path-patterns-blob-storage-output
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-custom-path-patterns-blob-storage-output
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-custom-path-patterns-blob-storage-output
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-manage-job
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-manage-job

Analyzing data by using Power BI – and introduction to Power BI | 349

Analyzing data by using Power BI – and introduction to Power BI
Power BI is a cloud-based analytics service that allows you to quickly and easily connect
to your data wherever it exists. Once connected to your data, you can use Power BI to
define rules and logic to transform and clean your data on an automated basis. Power
BI allows you to build powerful data models to centralize relationships, hierarchies, key
performance indicators, calculations, security roles, and partitions. Then your users
and developers can build powerful, flexible, and dynamic dashboards to facilitate deep
analysis with amazing capabilities such as natural language queries, machine learning,
and custom visualizations.

Understanding the Power BI ecosystem

Power BI Desktop

Power BI Desktop is a free application that is installed on your local computer that lets
you connect to, transform, and visualize your data. Power BI Desktop allows you to
connect to multiple data sources and combine them into a data model for the purpose
of assembling a collection of visuals called a report. This report can be shared with
other people through the Power BI service or Power BI Report Server. Power BI Desktop
is one of the main ways that BI developers and power users may create Power BI data
models and reports.

Note

Download Power BI Desktop here to start creating data models and reports:
https://powerbi.microsoft.com/en-us/desktop/.

Power BI service

The Power BI service, sometimes called Power BI online or app.powerbi.com, is where
you publish and securely share content that you've created using Power BI Desktop. In
the Power BI service, you can create dashboards for navigating across many reports and
many data sources, dashboards for transforming data flows, dashboards for integrating
and enriching big data, and reports based on shared data models. The Power BI service
is the best way to distribute data and gain deeper insights across your organization.

https://powerbi.microsoft.com/en-us/desktop/

350 | Data Warehousing

Power BI Premium

Power BI Premium is an add-on to Power BI and provides dedicated and enhanced
resources to run the Power BI service for your organization. Power BI Premium
provides dedicated infrastructure for your Power BI workloads, which provides greater
scale and performance, flexible capacity-based licensing, support for data residency by
geography, unification of self-service and enterprise BI, and on-premises BI with Power
BI Report Server.

Note

View the following documentation to learn more about Power BI Premium: https://
docs.microsoft.com/en-us/power-bi/service-premium-what-is.

Power BI gateway

A Power BI gateway is software that is installed within your on-premises network to
facilitate access to data within the network. The Power BI gateway may be referred to
as a data gateway or an enterprise data gateway. The data gateway acts as the bridge
between the Power BI service and your data sources within your network to support
the refreshing of data flows, the direct querying of data sources, and data models.

Note

View the following how-to guide to understand how to install and configure a
Power BI gateway: https://docs.microsoft.com/en-us/power-bi/service-gateway-
install.

View the following article to learn more about managing data sources used by
Power BI: https://docs.microsoft.com/en-us/power-bi/service-gateway-manage.

https://docs.microsoft.com/en-us/power-bi/service-premium-what-is
https://docs.microsoft.com/en-us/power-bi/service-premium-what-is
https://docs.microsoft.com/en-us/power-bi/service-gateway-install
https://docs.microsoft.com/en-us/power-bi/service-gateway-install
https://docs.microsoft.com/en-us/power-bi/service-gateway-manage

Analyzing data by using Power BI – and introduction to Power BI | 351

Power BI mobile apps

Power BI offers a collection of mobile apps for iOS, Android, and Windows 10 mobile
devices, which allow you to access your Power BI content in the Power BI service and
Power BI Report Server. With the Power BI mobile apps, you can stay connected to your
data, reports, and dashboards from any device and any location.

Note

Read the following article to learn more about optimizing reports for Power BI
mobile apps: https://docs.microsoft.com/en-us/power-bi/desktop-create-phone-
report.

Power BI Report Server

Power BI Report Server is an on-premises report server with a web portal that displays
and manages reports and key performance indicators. This also includes the tools for
creating Power BI reports, paginated reports, mobile reports, and key performance
indicators. Power BI Report Server includes a superset of the features of SQL Server
Reporting Services and is covered in detail in Chapter 13, Power BI Report Server.

Note

Read the following documentation to understand the differences between Power
BI Report Server and the Power BI service: https://docs.microsoft.com/en-us/
power-bi/report-server/compare-report-server-service.

https://docs.microsoft.com/en-us/power-bi/desktop-create-phone-report
https://docs.microsoft.com/en-us/power-bi/desktop-create-phone-report
https://docs.microsoft.com/en-us/power-bi/report-server/compare-report-server-service
https://docs.microsoft.com/en-us/power-bi/report-server/compare-report-server-service

352 | Data Warehousing

Connecting Power BI to Azure SQL Data Warehouse

Power BI can quickly and easily connect to Azure SQL Data Warehouse with Power BI
Desktop using the following steps.

1.	 First, open your local installation of Power BI Desktop and click Get Data. In the
Get Data dialog window, search for SQL Data Warehouse, click Azure SQL Data
Warehouse, and click Connect:

Figure 11.7: Search for SQL Data Warehouse to connect to your Azure SQL Data Warehouse instance
with Power BI

2.	 Next, enter the server name for the Azure SQL Data Warehouse instance you want
to connect to. Select the data connectivity mode you want to use and click OK.
Select the type of credentials you wish to use to connect and enter the credentials
or sign in. Azure SQL Data Warehouse supports authentication using database
credentials or a Microsoft account. Click OK.

3.	 In the Navigator window, navigate to the database tables you would like to use
and select the tables that contain the data you wish to visualize in Power BI. Click
the checkboxes to select the tables and click Load when you're done. Now you're
ready to start enhancing the data model and visualizing data.

Note

Use the Power BI Guided Learning path to get started with building data models
and reports and sharing content with Power BI: https://docs.microsoft.com/en-us/
power-bi/guided-learning/.

https://docs.microsoft.com/en-us/power-bi/guided-learning/
https://docs.microsoft.com/en-us/power-bi/guided-learning/

Analysis Services provides superior performance for decision support and business
analytics workloads via multidimensional mode and tabular mode. Multidimensional
models, sometimes referred to as cubes, were introduced with the release of
SQL Server 2000, while tabular mode was introduced with SQL Server 2012. Both
multidimensional and tabular mode provide the ability to create analytical data
models designed to support ad hoc data exploration capabilities by centralizing and
standardizing entity relationships, key performance indicators, hierarchies, calculations,
and security. The data models can then be integrated with client applications such as
Power BI, Excel, Power BI Report Server, and many other third-party data visualization
tools to support data exploration and self-service analysis. In SQL Server 2019,
Microsoft is continuing to invest in Analysis Services with improvements designed to
improve performance and the user experience.

Analysis Services

12

356 | Analysis Services

Introduction to tabular models
SQL Server Analysis Services tabular models are very different compared to
multidimensional models because, with tabular semantic models, data can be stored
in a highly compressed, in-memory, columnar database designed to support business
analytics over small to large volumes of data, in addition to supporting DirectQuery
against supported data sources. Tabular models also use tabular modeling structures to
store and analyze data:

Figure 12.1: Tabular models use tabular modeling structures, including tables and relationships, to
store and analyze data

Introduction to tabular models | 357

A common development workflow for developing and deploying a tabular model is
to use SQL Server Data Tools (SSDT) for Visual Studio or Visual Studio with Analysis
Services extensions to design the model, deploy the model as a database to SQL
Server Analysis Services or Azure Analysis Services (AAS), schedule the automatic
reprocessing of the data model, and assign user membership to security roles to
facilitate user access via business intelligence tools.

Another popular development for business users and power users developing and
deploying tabular models is the ability to use Power Pivot and Power Query in Excel to
connect to data sources, cleanse and transform data, and model data using a familiar
interface. Data can be visualized using Excel's powerful visualization capabilities. Once
the model is ready, the Excel file can be given to a business intelligence developer who
can convert the Power Pivot data model to an Analysis Services data model using Visual
Studio or by importing into SQL Server Management Studio (SSMS) with minimal work
required.

Once deployed, the management of tabular model databases is typically performed
using SSMS. SSMS can be used to initiate data refresh processes, modify security roles
and role membership, complete backup and restore operations, issue data analysis
expressions or multidimensional expression queries, and script new objects using the
Tabular Model Scripting Language (TMSL).

Users will typically query the tabular model using popular client tools such as Power
BI, Excel, Power BI Report Server, SQL Server Reporting Services, or other third-party
tools. To query the tabular model, users will require read access to the model.

358 | Analysis Services

Introduction to multidimensional models
SQL Server Analysis Services multidimensional models use cube structures to analyze
and explore data across dimensions. Multidimensional mode is the default server mode
for SQL Server Analysis Services and includes a query and calculation engine for online
analytical processing (OLAP) data with multiple storage modes to balance performance
with data scalability requirements:

Figure 12.2: Multidimensional models feature cube modeling constructs, including measure groups,
dimensions, and relationships

Like when developing a tabular model, the common workflow for developing and
deploying a multidimensional model is to use SSDT for Visual Studio or Visual Studio
with Analysis Services extensions to design the model, deploy the model as a database
to a SQL Server Analysis Services server, configure in multidimensional mode, schedule
the automatic reprocessing of the data model using SQL Server Integration Services
and SQL Server Agent Jobs, and assign user membership to security roles to facilitate
user access.

The management of a multidimensional model is also performed using SSMS. As with
tabular models, SSMS can be used to initiate data refresh processes, modify security
roles and role membership, complete backup and restore operations, issue Data
Analysis Expressions (DAX) or Multidimensional Expressions (MDX) queries, and
script new objects using the Analysis Services Scripting Language (ASSL).

Enhancements in tabular mode | 359

Users will typically query a multidimensional model using popular client tools such as
Power BI, Excel, Power BI Report Server, SQL Server Reporting Services, or other third-
party tools. To query the tabular model, users will require read access to the model.

Note

Review the following article to understand the differences between tabular and
multidimensional models and the considerations for deciding when to use tabular
and multidimensional models: https://docs.microsoft.com/en-us/sql/analysis-
services/comparing-tabular-and-multidimensional-solutions-ssas?view=sql-server-
ver15.

Enhancements in tabular mode
SQL Server 2019 Analysis Services and AAS includes new features and capabilities to
better support enterprise requirements. In this section, we will review the following
enhancements and capabilities included in the latest release of Analysis Services to help
you build better analytics solutions:

•	 Memory settings for resource governance

•	 Calculation groups

•	 Dynamic format strings

•	 DirectQuery

•	 Bidirectional cross-filtering

•	 Many-to-many relationships

•	 Query interleaving with short query bias

•	 Governance settings for Power BI cache refreshes

•	 Online attach

https://docs.microsoft.com/en-us/sql/analysis-services/comparing-tabular-and-multidimensional-soluti
https://docs.microsoft.com/en-us/sql/analysis-services/comparing-tabular-and-multidimensional-soluti
https://docs.microsoft.com/en-us/sql/analysis-services/comparing-tabular-and-multidimensional-soluti

360 | Analysis Services

Query interleaving with short query bias

Query interleaving with short query bias allows concurrent queries to share CPU
resources so that faster queries are not blocked behind slower queries. Short query bias
means fast queries can be allocated a higher proportion of resources than long running
queries.

Query interleaving is intended to have little to no performance impact on queries that
run in isolation. A single query can still consume as much CPU as possible.

Note

To learn more about query interleaving with short query bias and how to enable
this setting, read the following documentation: https://docs.microsoft.com/en-us/
analysis-services/tabular-models/query-interleaving.

Memory settings for resource governance

There are three new memory settings to assist with resource governance. These
memory settings are currently available for Azure Analysis Services:

•	 Memory\QueryMemoryLimit: The QueryMemoryLimit property is an advanced
property that is used to control how much memory can be used by temporary
results during a query. This only applies to DAX measures and queries and does
not account for general memory allocations used by the query. The default value
for this property is 0, which indicates that there is no limit specified. A value
specified between 1 and 100 indicates a percentage of memory. Numbers larger
than 100 are interpreted as numbers of bytes. This property can be set using the
latest release of SSMS to access the Analysis Server Properties dialog box.

•	 DbpropMsmdRequestMemoryLimit: This property is an XML for analysis property
used to override the Memory\QueryMemoryLimit server property value for a
given connection. The unit of measure is kilobytes. Here's a sample connection
string utilizing the DbpropMsmdRequestMemoryLimit property:

Provider=MSOLAP.8;Integrated Security=SSPI;Persist Security
Info=True;Initial Catalog=Adventure Works;Data Source=localhost;Extended
Properties="DbpropMsmdRequestMemoryLimit=10000";MDX Compatibility=1;Safety
Options=2;MDX Missing Member Mode=Error;Update Isolation Level=2

https://docs.microsoft.com/en-us/analysis-services/tabular-models/query-interleaving
https://docs.microsoft.com/en-us/analysis-services/tabular-models/query-interleaving

Enhancements in tabular mode | 361

•	 OLAP\Query\RowsetSerializationLimit: The RowsetSerializationLimit server
property limits the number of rows returned in a rowset to clients. This property
applies to both DAX and MDX and can be used to protect server resources from
extensive data export usage. The default value for this property is -1, which
indicates that no limit is applied. When a query is submitted that exceeds the
defined value for RowsetSerializationLimit, the query is canceled and an error is
returned. This property can be set using the latest release of SSMS to access the
Server Properties dialog box.

Calculation groups

Calculation groups are an exciting new feature available in Azure Analysis Services
and are new to SQL Server 2019 Analysis Services. Calculation groups are intended to
address the issue of extensive measure proliferation in complex modeling scenarios
involving common calculations such as time-intelligence calculations. Also, calculation
groups will enable many organizations with existing multidimensional cubes featuring
time-intelligence dimensions to migrate to tabular models. This way, they can take
advantage of the latest tabular features and/or migrate to the cloud using Azure
Analysis Services.

Many Analysis Services tabular models feature dozens or hundreds of base calculations.
Calculation groups allow you to define a series of calculations via a calculation group,
which can be applied to any number of base calculations. A calculation group is exposed
to the end user as a table with a single column. Each value in the column represents
a reusable calculation that can be applied to any base measure when applicable.
Calculation groups reduce the number of calculations in a tabular model and provide a
simple, uncluttered interface for the end user.

The following three new DAX functions are introduced to support calculation groups:

Table 12.3: New DAX functions

362 | Analysis Services

Note

Review the following documentation to learn more about calculation groups:
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/calculation-
groups?view=sql-server-ver15.

Dynamic format strings

Dynamic format strings, when used with calculation groups, allow conditional
formatting for measures. This is very useful in scenarios where the calculations in a
calculation group should format measures differently based on the calculation. For
example, a year-on-year growth calculation should be formatted as a currency, while a
year-on-year growth percentage calculation should be formatted as a percentage.

To facilitate the dynamic formatting of measures used with a calculation group, the
following DAX function is added:

Table 12.4: The added DAX function

Note

For more information on format strings in Analysis Services, review the
following documentation: https://docs.microsoft.com/en-us/sql/analysis-
services/multidimensional-models/mdx/mdx-cell-properties-format-string-
contents?view=sql-server-2017#numeric-values.

https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/calculation-groups?view=sql-se
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/calculation-groups?view=sql-se
https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/mdx/mdx-cell-properti
https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/mdx/mdx-cell-properti
https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/mdx/mdx-cell-properti

Enhancements in tabular mode | 363

DirectQuery

By default, tabular models use an in-memory cache to store and query data. Typically,
this ensures that simple and complex queries against a tabular model are very fast. But
in certain scenarios with very large datasets, the available memory may not be enough
to meet data volume and refresh requirements.

A tabular model with DirectQuery turned on does not store data in the in-memory
cache. Instead, the dataset remains in the Relational Database Management System
(RDBMS) and all queries against the tabular model are sent to the underlying RDBMS.

DirectQuery offers the following benefits to overcome limitations related to aggressive
data volume and refresh requirements:

•	 Datasets can be larger than the available memory of the Analysis Services server.

•	 The data is always up to date because changes to the underlying dataset are
immediately reflected in queries against the models without the need for
processing the Analysis Services model.

•	 Security can be managed in the RDBMS.

•	 Analysis Services can perform optimization for complex formulas to ensure
the query plan for the query executed against the RDBMS will be as efficient as
possible.

In SQL Server 2019, the following data sources are supported for DirectQuery:

•	 SQL Server 2008 and later

•	 Azure SQL Database

•	 Azure SQL Data Warehouse

•	 Microsoft SQL Analytics Platform System (APS)

•	 Oracle 9i and later relational databases

•	 Teradata V2R6 and later relational databases

364 | Analysis Services

To enable a tabular model for DirectQuery using either SSDT or Visual Studio with the
Analysis Services extension, select the model.bim file and navigate to the Properties
window. Find the DirectQuery Mode property and set the value to On, as seen in the
following screenshot. DirectQuery can also be enabled for a model after deployment by
modifying the database properties in SSMS:

Figure 12.5: Enabling DirectQuery for a tabular model by setting the DirectQuery Mode property to On

DirectQuery models have the following functional restrictions:

•	 DirectQuery models can only use data from a single relational database. Tabular
models including data from multiple sources cannot be enabled for DirectQuery.

•	 DirectQuery models cannot use a stored procedure as the specified SQL
statement for a table definition when using the Data Import Wizard.

•	 Calculated tables are not supported in DirectQuery models.

•	 The default row limit is 1,000,000 rows, which can be increased by specifying the
MaxIntermediateRowSize property in the msmdsrv.ini file.

•	 In DirectQuery mode, Analysis Services converts DAX formulas and calculated
measure definitions to SQL statements. DAX formulas containing elements that
cannot be converted into SQL syntax will return validation errors in the model.
This could result in some calculation formulas needing to be rewritten to use a
different function or to work around the limitation by using a derived column.

Enhancements in tabular mode | 365

•	 In DirectQuery mode, only a single partition can be designated as the DirectQuery
partition for a table.

•	 In specific cases, the query results may differ between a cached model compared
to a DirectQuery model. The potential differences are related to the semantic
difference between the cached model engine and the database engine.

Consider the following MDX limitations:

•	 All object names must be fully qualified.

•	 Session-scoped MDX statements are not supported although query-scoped
constructs are supported.

•	 No user-defined hierarchies.

•	 No native SQL queries are supported.

•	 No tuples with members from different levels in MDX sub-select clauses.

Consider the following recommendations and best practices:

•	 Use DirectQuery mode when your users require real-time access to data, the data
volume is larger than the available memory, or you are required to use row-level
security in the database engine.

•	 Typically, the query performance of a cached model is very fast, which is ideal for
business intelligence and analysis applications. A DirectQuery model, however,
may have noticeably slower query performance since all queries are converted to
SQL and sent to the underlying data source. Consider using columnstore indexes
in SQL Server 2019 to ensure DirectQuery can leverage query optimizations
provided by the database engine.

•	 Enable the Rely on Referential Integrity option on relationships in a model using
DirectQuery. This will ensure that queries generated by Analysis Services use an
inner join instead of an outer join.

•	 Because some features in the cached model are not supported with DirectQuery,
it is generally recommended to decide before beginning model development
whether your model will utilize DirectQuery. This way, you eliminate the risk
of developing a cached model with features that are not compatible with
DirectQuery.

366 | Analysis Services

•	 Always review the previously mentioned benefits and limitations of DirectQuery
before making the decision to use DirectQuery mode. Review the following
documentation to learn more about DirectQuery mode: https://docs.microsoft.
com/en-us/sql/analysis-services/tabular-models/directquery-mode-ssas-
tabular?view=sql-server-ver15.

•	 Read the following documentation to understand the DAX formula compatibility
issues in DirectQuery mode: https://docs.microsoft.com/en-us/sql/analysis-
services/tabular-models/dax-formula-compatibility-in-directquery-mode-ssas-
2016?view=sql-server-ver15.

Bidirectional cross-filtering

Single-directional filters are the default filters in Analysis Services tabular models.
Bidirectional cross-filters allow the filter context of a given relationship to be used
as the filter context for another relationship, with one table being common to both
relationships. This means that a filter context can be propagated to a second related
table on the other side of a relationship.

Consider the following example. The Customer and Product tables each have a
bidirectional relationship with Internet Sales. Because both relationships are set to
bidirectional, meaning that filtering can occur in both directions, a filter context from
the Customer table can propagate to the Product table.

Bidirectional cross-filtering allows filter contexts to propagate from one table to
another table on the opposite side of a complementary relationship:

Figure 12.6: Bidirectional cross-filtering

https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/directquery-mode-ssas-tabular?
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/directquery-mode-ssas-tabular?
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/directquery-mode-ssas-tabular?
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/dax-formula-compatibility-in-d
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/dax-formula-compatibility-in-d
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/dax-formula-compatibility-in-d

Enhancements in tabular mode | 367

To enable bidirectional cross-filtering, set the Filter Direction property to <<To Both
Tables>>:

Figure 12.7: Setting the filter direction property

Many-to-many relationships

Another important feature new to SQL Server 2019 Analysis Services and available in
Azure Analysis Services is many-to-many relationships. Many-to-many relationships in
tabular models enable relationships between two tables with non-unique columns. For
example, if the Sales Forecast table is specified at the monthly level, there is no need to
normalize the Date table into a separate table at the month level because the many-to-
many relationship at the month level can be created.

368 | Analysis Services

Governance settings for Power BI cache refreshes

Because the Power BI service in the cloud caches dashboard tile data and report data
for the initial loading of Live Connect reports, an excessive number of cache queries
could be submitted to Analysis Services. In Azure Analysis Services and SQL Server
2019 Analysis Services and later, the ClientCacheRefreshPolicy property allows you to
override the Schedule cache refresh setting at the server level for all Power BI datasets.
All Live Connect reports will observe the server-level setting regardless of the dataset-
level setting.

The default value for this property is -1, which allows all background cache refreshes
as specified in the Schedule cache refresh setting for the dataset. To discourage all
background cache refreshes, specify 0 for this setting.

Online attach

SQL Server 2019 Analysis Services introduces the ability to attach a tabular model as an
online operation. The Online attach feature can be used for synchronization of read-
only replicas in an on-premises query scale-out environment.

Without this feature, administrators are first required to detach the database and then
attach the new version of the database, which leads to downtime when the database is
unavailable to users.

To perform an Online attach operation, use the AllowOverwrite option of the Attach
XMLA command:

<Attach xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Folder>C:\Program Files\Microsoft SQL Server\MSAS15\OLAP\Data\
AdventureWorks.0.db\</Folder>

 <AllowOverwrite>True</AllowOverwrite>

</Attach>

Introducing DAX | 369

Introducing DAX
The DAX language is the formula language used to create calculations in Analysis
Services, Power BI Desktop, and Power Pivot for Excel. DAX formulas include functions,
operators, and values to perform basic calculations on data in tables and columns. For
tabular models authored using Visual Studio 2019, DAX formulas can be used to create
calculated columns, measures, tables, and row filters. The flexibility and capability of
the DAX formula language is one of the most powerful aspects of Analysis Services. A
firm understanding of DAX will allow you to tackle any set of user requirements using
an optimal approach.

Note

Review the following documentation for the complete guide to the extensive DAX
functions reference library: https://docs.microsoft.com/en-us/dax/dax-function-
reference.

The model author will define the DAX formula for a calculated column, measure, and
table using the formula bar in Visual Studio. The formula for a row filter will be defined
in the Role Manager window. The formula bar and the Role Manager window include
the following features to assist the model author with writing DAX formulas:

•	 Syntax coloring: Functions are now displayed in a blue font, variables in a cyan
font, and string constants in a red font to distinguish these expression elements
more easily from fields and other elements.

•	 IntelliSense: Errors are now identified by a wavy red underscore, and typing a few
characters displays a function, table, or column name that begins with matching
characters.

•	 Formatting: You can persist tabs and multiple lines by pressing Alt + Enter in your
expression to improve legibility. You can also include a comment line by typing //
as a prefix to your comment.

•	 Formula fixup: In a model set to compatibility level 1,200 or higher, the model
designer automatically updates measures that reference a renamed column or
table. This does not apply to row filters defined in roles using the Role Manager
dialog box.

•	 Incomplete formula preservation: In a model set to compatibility level 1,200 or
higher, you can enter an incomplete formula, save and close the model, and then
return to your work at a later time.

https://docs.microsoft.com/en-us/dax/dax-function-reference
https://docs.microsoft.com/en-us/dax/dax-function-reference

370 | Analysis Services

Calculated columns

Calculated columns in a tabular model allow the addition of new data to your model
based on a DAX formula that the model author defines during the designing of the
tabular model in Visual Studio. The formula for a calculated column can refer to other
columns existing in the tabular model. A given calculated column can also depend on
other calculated columns.

When you define a valid formula for a calculated column during the designing of the
tabular model, the value for each row in the column is computed immediately. After the
tabular model is deployed to the server, the row values for the calculated column are
computed during the data refresh process.

Calculated columns can be used for a variety of purposes. For example, a calculated
column could be used to concatenate values from other columns, manipulate string
values, perform arithmetic on numeric values, manipulate date and time values, create
conditional values, and much more.

The following example demonstrates a simple formula in a calculated column to
concatenate the values from two other columns:

='Geography'[City] & ", " & 'Geography'[State Province Code]

Note

For a step-by-step example describing how to create a calculated column in an
Analysis Services tabular model, see the following tutorial: https://docs.microsoft.
com/en-us/sql/analysis-services/tabular-models/ssas-calculated-columns-create-a-
calculated-column?view=sql-server-ver15.

To learn more about calculated columns in Analysis Services tabular models,
review the following article: https://docs.microsoft.com/en-us/sql/analysis-services/
tabular-models/ssas-calculated-columns?view=sql-server-ver15.

Calculated measures

Calculated measures are formulas that are generally used to aggregate data
automatically within the context of a query. Like calculated columns, calculated
measures are defined by the model author using Visual Studio. Measures can be based
on standard aggregation functions such as SUM or AVG or can be defined using a
custom DAX formula.

https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/ssas-calculated-columns-create
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/ssas-calculated-columns-create
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/ssas-calculated-columns-create
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/ssas-calculated-columns?view=s
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/ssas-calculated-columns?view=s

Introducing DAX | 371

Unlike calculated columns, calculated measures require a reporting client application,
such as Excel or Power BI, to provide the context with which to evaluate the formula.
The formula within the calculated measure is evaluated at query time for each cell
within the result set.

To create a basic calculation using the SUM, AVG, COUNT, DISTINCTCOUNT, MAX, or
MIN functions, first select the column you wish to aggregate. Then, click the Column
menu, select AutoSum, and then select the aggregation method you'd like to use, as
depicted in the following screenshot:

Figure 12.8: Creating a calculated measure automatically using the AutoSum option

Calculated measures can also use more complex formulas to create custom methods of
aggregations. For example, the following formula creates a measure that calculates the
running total for the Sales Amount column:

=CALCULATE(SUM('Internet Sales'[Sales Amount]),DATESYTD('Date'[Date]))

372 | Analysis Services

Calculated measures can be used to create Key Performance Indicators (KPIs). In
Analysis Services, a KPI is a collection of calculated measures used to define a base
value, a target value, and a status value. Before you can create a KPI, you must first
define a calculated measure to use as the base value. To create a KPI, right click on the
measure that will be used as the base value and then click Create KPI. To define the
target value, select Measure and then select the target measure from the drop-down
list or select Absolute value and then type a numeric value. Then, use the slider bar
to define the status thresholds. Finally, select an icon style to display the KPI status
graphically.

Note

For a step-by-step example describing how to create a calculated measure in an
Analysis Services tabular model, see the following tutorial:
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-
manage-measures-ssas-tabular?view=sql-server-ver15.

For an example of how to create a KPI, see the following article: https://docs.
microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-manage-
kpis-ssas-tabular?view=sql-server-ver15.

To learn more about calculated measures in Analysis Services tabular models,
including how to use calculated measures to create KPIs, see the following article.
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/measures-
ssas-tabular?view=sql-server-ver15.

Calculated tables

A calculated table is a computed table based on either a DAX query or expression
derived from other tables in the same tabular model. To create a calculated table, at
least one table must first exist in the tabular model.

Calculated tables, for example, are useful for addressing the following scenarios:

•	 Creating a custom date table using the CALENDAR() or CALENDARAUTO() functions

•	 Creating separate tables based on a single table as a role-playing dimension table

•	 Creating a filtered row set with a subset or superset of columns from existing
tables

https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-manage-measures-ssa
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-manage-measures-ssa
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-manage-kpis-ssas-ta
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-manage-kpis-ssas-ta
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-and-manage-kpis-ssas-ta
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/measures-ssas-tabular?view=sql
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/measures-ssas-tabular?view=sql

Introducing DAX | 373

To create a calculated table, click the Create A New Table Calculated From A DAX
Formula tab at the bottom of the model designer, as shown in the following figure:

Figure 12.9: Creating a calculated table based on a DAX formula

Here's an example of a calculated table summing the sales amount for each state
province name and calendar year:

=SUMMARIZECOLUMNS(Geography[State Province Name]

, 'Date'[Calendar Year]  

, "Sales Amount" , SUM('Internet Sales'[Sales Amount])

Note

Review the following article for a step-by-step example of how to create a
calculated column: https://docs.microsoft.com/en-us/sql/analysis-services/tabular-
models/create-a-calculated-table-ssas-tabular?view=sql-server-ver15.

Row filters

Row filters define which rows in a table are accessible to members of a given security
role and are defined via a DAX formula. When the model author defines a role by using
the Role Manager in Visual Studio, row filters can be applied to ensure members of the
role only have access to designated rows. Row filters can also be defined for a model
currently deployed to the Analysis Services server using Role Properties in SSMS. A
tabular model can have multiple roles for different groups of users, with each role
having different row filters.

A row filter creates an allowed row set that does not deny access to other rows. Rows
not returned as part of the allowed row set are simply excluded by the DAX formula. But
because Analysis Services Security is additive, if a user is a member of a security role
that allows access to a given row set but the user also a member of another security
role that does not allow access to that row set, the user will be able to view the role set.

https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-a-calculated-table-ssas
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/create-a-calculated-table-ssas

374 | Analysis Services

To create a security role with a row filter in Visual Studio, select the Model menu and
select Roles. In the Role Manager, click New to create a new role. You must give the
role a name and the level of permissions assigned to members of the role. You can
assign membership to the role using the Members tab. On the Row Filters tab, enter
a DAX formula to define which rows can be returned by members of the role. The DAX
formula for a row filter must evaluate to a Boolean TRUE/FALSE condition, as seen in the
following figure:

Figure 12.10: Creating a role with a row filter to restrict which rows are accessible
to members of the role

Introducing DAX | 375

Note

To learn more about roles and row filters in Analysis Services, see the following
documentation: https://docs.microsoft.com/en-us/sql/analysis-services/tabular-
models/roles-ssas-tabular?view=sql-server-ver15.

Dynamic row-level security allows the model designer to apply row-level security
to a group of users based on the username or login ID of the user at the time of
accessing the Analysis Services model. To understand how to implement dynamic
row-level security, see the following article and tutorial: https://docs.microsoft.
com/en-us/sql/analysis-services/tutorial-tabular-1200/supplemental-lesson-
implement-dynamic-security-by-using-row-filters?view=sql-server-ver15.

Analysis Services also supports table-level and column-level security in addition to
row-level security. To learn more about how to use object-level security, see the
following article: https://docs.microsoft.com/en-us/sql/analysis-services/tabular-
models/object-level-security?view=sql-server-ver15.

DAX calculation best practices

To avoid suboptimal performance with calculations, see the following recommended
practices:

•	 Avoid creating large, complex DAX formulas when possible. Subdivide complex
calculated columns into multiple calculated columns utilizing smaller, less
complex formulas. This will ease troubleshooting and debugging.

•	 If you're experiencing poor performance when developing calculations in Visual
Studio, you may benefit from setting recalculation mode to manual to prevent
calculations from automatically being recalculated during development. To set
recalculation mode to manual in Visual Studio, navigate to the Model menu, select
Calculation Options, and then select Manual Calculation.

•	 Use variables whenever possible. Variables allow a given DAX expression to reuse
logic within the same expression thus reducing execution time. We'll discuss
variables in more detail later in this chapter.

https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/roles-ssas-tabular?view=sql-se
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/roles-ssas-tabular?view=sql-se
https://docs.microsoft.com/en-us/sql/analysis-services/tutorial-tabular-1200/supplemental-lesson-imp
https://docs.microsoft.com/en-us/sql/analysis-services/tutorial-tabular-1200/supplemental-lesson-imp
https://docs.microsoft.com/en-us/sql/analysis-services/tutorial-tabular-1200/supplemental-lesson-imp
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/object-level-security?view=sql
https://docs.microsoft.com/en-us/sql/analysis-services/tabular-models/object-level-security?view=sql

376 | Analysis Services

Writing DAX queries
Once the tabular model has been deployed to the server, the model can be made
available to users for use with client tool applications. Users who will connect to the
tabular database must be a member of a security role that has read access.

Typically, an end user will use a client tool application such as Excel, Power BI, Power
BI Report Server, or another third-party tool, for example, to connect to a tabular
database and browse the model. These types of tools will write the DAX query against
the tabular database on behalf of the user as the user adds a column, measure, or filter
to the report. But DAX queries can also be created using SSMS or other tools such as
DAX Studio. A query defined and executed using SSMS will return the result set as a
table.

Analysis Services object names are case-insensitive, so referring to the Internet Sales
table as internet sales would give you the same table. See the following table for
examples of how to refer to Analysis Service objects within a DAX expression or query:

Table 12.11: DAX expressions and queries to refer to Analysis Service objects

In the following example, you will connect to an Analysis Services tabular database
using SSMS and then issue several queries:

1.	 Open SSMS. In the Connect to Server dialog box, select Analysis Services for
Server Type and enter the name for Server name. If connecting to SQL Server
Analysis Services, select Windows Authentication for Authentication method.
If connecting to Azure Analysis Services, select Active Directory – Password or
Active Directory – Universal with MFA support. Click Connect.

Writing DAX queries | 377

2.	 In Object Explorer, expand the Databases folder, right-click on Databases, select
New Query, and select DAX, as seen in the following figure. This will open a new
query window to begin writing a DAX query:

Figure 12.12: Writing a DAX query using SSMS

3.	 In the new query window, write a simple query using the EVALUATE function. The
EVALUATE function requires a table reference, as seen here. The following query will
return a result set including all columns and rows from the Internet Sales table:

EVALUATE(
 'Internet Sales'
)

You should get the following output:

Figure 12.13: The Evaluate function returns a table

378 | Analysis Services

4.	 To sort the results of the previous query, add an ORDER BY keyword and a fully
qualified column reference to sort the query result set. As an example, this query
sorts the results of the previous query using the Sales Order Number column:

EVALUATE(
 'Internet Sales'
)
 ORDER BY 'Internet Sales'[Sales Order Number] ASC

5.	 The DEFINE keyword supports creating entities, such as variables, measures, tables,
and columns, that only exist for the duration of a query. In the following example,
notice the DEFINE keyword and the definitions of multiple measures:

DEFINE
MEASURE
   'Internet Sales'[SumCost] = SUM('Internet Sales'[Total Product Cost])
MEASURE
   'Internet Sales'[SumSalesAmount] = SUM('Internet Sales'[Sales Amount])
MEASURE
   'Internet Sales'[ProfitMargin] = [SumSalesAmount] - [SumCost]
MEASURE
 'Internet Sales'[ProfitMarginRatio] =
DIVIDE([ProfitMargin],[SumSalesAmount],BLANK())
EVALUATE(
 SUMMARIZECOLUMNS(
   'Internet Sales'[Sales Order Number],
   'Internet Sales'[Order Date],
   "Profit Margin",[ProfitMargin],
   "Profit Margin Ratio",[ProfitMarginRatio]
   )
)
 ORDER BY 'Internet Sales'[Sales Order Number]

Using variables in DAX | 379

You should get the following output:

Figure 12.14: The DEFINE keyword supports defining objects that exist only during
the duration of the query

Note

For more information on writing DAX queries, see the following article: https://
docs.microsoft.com/en-us/dax/dax-queries.

Using variables in DAX
Analysis Services DAX expressions also support using variables to simplify complex
expressions by separating a single expression into a series of more easily understood
expressions. As previously mentioned, variables also allow a given DAX expression to
reuse logic within the same expression, which could improve query performance.

Variables can be defined anywhere in a DAX expression and for any data type, including
tables, using the following syntax:

VARIABLENAME = RETURNEDVALUE

https://docs.microsoft.com/en-us/dax/dax-queries
https://docs.microsoft.com/en-us/dax/dax-queries

380 | Analysis Services

To create a variable definition, use the VAR keyword, as seen in the following code
sample:

= VAR

   SumQuantity = SUM('Internet Sales'[Order Quantity])

RETURN

   IF(

     SumQuantity > 1000,

     SumQuantity * 0.95,

     SumQuantity * 1.10

  )

A DAX expression can have as many variables as the model author needs. Each variable
will have its own VAR definition, as seen here:

= VAR

   SumCost = SUM('Internet Sales'[Total Product Cost])

VAR

   SumSalesAmount = SUM('Internet Sales'[Sales Amount])

VAR

   ProfitMargin = SumSalesAmount - SumCost

RETURN

   DIVIDE(

     ProfitMargin,

     SumSalesAmount,

     BLANK()

  )

Introduction to Azure Analysis Services
AAS is a fully managed Platform as a Service (PaaS) based on SQL Server Analysis
Services tabular models to provide enterprise-grade data models in the cloud. AAS uses
the same advanced mashup and modeling engine built into SQL Server 2019 Analysis
Services to supporting combining data from multiple sources, defining metrics, and
securing your data in a tabular semantic data model.

Introduction to Azure Analysis Services | 381

AAS supports tabular models at the 1,200 compatibility level and higher. It is compatible
with many great features that you may already be familiar with in SQL Server Analysis
Services Enterprise Edition, including partitions, perspectives, row-level and object-
level security, bidirectional and many-to-many relationships, calculation groups,
DirectQuery mode, and more.

Selecting the right tier

AAS is available in three different tiers, with each tier offering different amounts of
processing power, Query Performance Units (QPUs), and memory size:

•	 Developer tier: This tier is recommended for development and test scenarios.
The Basic tier includes the same functionality of the Standard tier but is limited
in processing power, QPUs, and memory. There is no service level agreement
available for the Developer tier as this tier is intended only for development and
test scenarios.

•	 Basic tier: The Basic tier is intended for production solutions that utilize smaller
tabular models, have simple data refresh requirements, and have limited user
concurrency. The Basic tier does not include the capability for query replica scale-
out, perspectives, multiple partitions, and DirectQuery.

•	 Standard tier: The Standard tier is for mission-critical production applications
that require elastic user concurrency and support for rapidly growing data models.
The Standard tier also includes all the capabilities offered by AAS.

When you create a server, you must select a plan with a tier, although you can change
the plan and/or tier later. You always have the flexibility to change plans within the
same tier or upgrade to a higher tier, but you can't downgrade from a higher tier to
a lower tier. All tiers support row-level and object-level security, in-memory storage,
backup and restore, translations, and DAX calculations.

Note

Check out the pricing details documentation for more information on the features
and pricing of AAS: https://azure.microsoft.com/en-us/pricing/details/analysis-
services/.

https://azure.microsoft.com/en-us/pricing/details/analysis-services/
https://azure.microsoft.com/en-us/pricing/details/analysis-services/

382 | Analysis Services

Scale-up, down, pause, resume, and scale-out

In addition to the previously mentioned enterprise features, AAS also provides the
ability for you to scale up, scale down, or even pause your Analysis Services server using
the Azure portal or on the fly with PowerShell, meaning that you only pay for what you
use. The ability to scale up, scale down, pause, and resume provides customers with
the flexibility to scale based on user demand and get the right level of resources at the
appropriate level when needed.

AAS scale-out allows queries to be distributed among multiple query replicas in a query
pool. Query replicas include synchronized copies of your tabular models to support
distributing query workloads to reduce query times for high query workloads. The
query pool can contain up to seven additional query replicas depending on the selected
plan and region.

Note

See the following documentation to learn how to configure AAS scale-out: https://
docs.microsoft.com/en-us/azure/analysis-services/analysis-services-scale-out.

Connecting to your data where it lives

AAS supports a wide variety of data sources. AAS can directly connect to Azure data
sources such as Azure SQL Database, Azure SQL Data Warehouse, Azure Blob Storage,
and Azure Cosmos DB. To support connectivity to on-premises data sources or other
data sources secured in Azure with an Azure virtual network, an on-premises data
gateway is required to facilitate connectivity behind the firewall. The types of data
sources supported depends on factors such as model compatibility level, available data
connectors, authentication type, providers, and on-premises data gateway support.

Note

See the following documentation to learn more about supported data sources:
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-
datasource.

To learn more about installing and configuring the on-premises data gateway, see
the following documentation: https://docs.microsoft.com/en-us/azure/analysis-
services/analysis-services-gateway-install.

https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-scale-out
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-scale-out
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-datasource
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-datasource
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-gateway-install
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-gateway-install

Introduction to Azure Analysis Services | 383

Securing your data

AAS also provides security for your sensitive data at multiple levels. At the server level,
AAS provides firewall protection, Azure authentication based on Azure Active Directory,
server-side encryption using Azure Blob server-side encryption, row-level and object-
level security, and automation through service principals to perform unattended tasks.

As an Azure service, AAS also provides a basic level of protection from Distributed
Denial of Service (DDoS) attacks automatically.

Note

To learn more about how AAS secures your data, see the following documentation:
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-
overview#your-data-is-secure.

To learn more about how Azure protects against DDoS attacks, see the following
documentation: https://docs.microsoft.com/en-us/azure/virtual-network/ddos-
protection-overview.

Using familiar tools

With AAS, you can continue to use the same tools you're already familiar with. Continue
developing tabular models for AAS using SSDT for Visual Studio or Visual Studio with
the Analysis Services extension.

Management of your servers through SSMS is also supported. Connect to your AAS
server, execute DAX queries, run TMSL scripts, and automate tasks using TMSL scripts
and PowerShell.

Connectivity with modern business intelligence tools such as Power BI, Excel, Power
BI Report Server, and third-party tools is supported, providing users with the flexibility
to continue to use tools that they're already familiar with to produce interactive
visualizations based on tabular models.

https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-overview#your-data-is-sec
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-overview#your-data-is-sec
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview

384 | Analysis Services

Built-in monitoring and diagnostics

An important part of any Analysis Services solution is monitoring how your servers
are performing. With Azure diagnostic logs, you can monitor and send logs to Azure
Storage, stream logs to Azure Event Hubs, and export logs to Azure Monitor. Using
Extended Events (xEvents), all Analysis Services events can be captured and targeted to
specific consumers.

Note

Learn more about how to use Dynamic Management Views to monitor AAS by
reading the following documentation: https://docs.microsoft.com/sql/analysis-
services/instances/use-dynamic-management-views-dmvs-to-monitor-analysis-
services.

See the following article and tutorial to understand how to set up diagnostic
logging for AAS: https://docs.microsoft.com/en-us/azure/analysis-services/analysis-
services-logging.

Provisioning an Azure Analysis Services server and deploying a tabular model

In this example, we will walk through configuring an AAS server using the Azure portal
and deploying an Analysis Services database using Visual Studio:

1.	 Log in to the Azure portal using https://portal.azure.com.

2.	 Click the Create a resource button at the top left. Search for Analysis Services
and click Create.

3.	 In Analysis Services, fill in the required field and click Create. Typically, it only
takes a minute or two to create the AAS server:

Server name: A unique name used to reference your Analysis Services server.

Subscription: The Azure subscription the server will be associated with.

Resource Group: You can create a new resource group or use a previously existing
resource group.

Location: Select the Azure datacenter region where your Analysis Services server
should exist.

Pricing tier: Select the pricing tier and plan.

Administrator: Define the server administrator using Azure Active Directory.

https://docs.microsoft.com/sql/analysis-services/instances/use-dynamic-management-views-dmvs-to-moni
https://docs.microsoft.com/sql/analysis-services/instances/use-dynamic-management-views-dmvs-to-moni
https://docs.microsoft.com/sql/analysis-services/instances/use-dynamic-management-views-dmvs-to-moni
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-logging
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-logging
https://portal.azure.com

Introduction to Azure Analysis Services | 385

Backup Storage Setting: Optionally define the default storage account for holding
Analysis Services database backups. This can also be specified later.

Storage key expiration: Optionally specify a storage key expiration period:

Figure 12.15: Use the Azure portal to create an AAS server

386 | Analysis Services

4.	 After the AAS server is created, navigate to the AAS resource using the Azure
portal. In the Analysis Services blade, find the server name and copy the Server
name to your clipboard by clicking the Copy to clipboard icon to the right of the
Server name:

Figure 12.16: Copy the server name to your clipboard

5.	 Open your Analysis Services project in Visual Studio. In the Solution Explorer,
right-click the project name and select Properties.

6.	 On the deployment property page, paste the AAS server name in the Server
property box. Click OK:

Figure 12.17: Paste the server name in the server property box in the deployment property page

Introduction to Azure Analysis Services | 387

7.	 Now you're ready to deploy the model. In Visual Studio, right-click the project
file in the Solution Explorer and select Deploy. You'll be asked to authenticate
to Azure using your Azure credentials. To deploy or modify an Analysis Services
database, you need to be an administrator on the server. Once you have
authenticated, the model will be deployed and ready for querying.

Power BI Report Server is an enterprise Business Intelligence (BI) solution that
supports displaying reports and key performance indicators (KPIs) and managing
report distribution across desktop and mobile devices. Power BI Report Server includes
all the features you may be familiar with in SQL Server Reporting Services (SSRS) as
well as many of the features included with Power BI. In this chapter, we'll review the
core capabilities of Power BI Report Server, the new features that are included in the
latest releases of Power BI Report Server, as well as key differences between Power BI
Report Server and SSRS.

SSRS versus Power BI Report Server
While SSRS was introduced with the release of SQL Server 2005, the first release of
Power BI Report Server was made generally available in June 2017. Power BI Report
Server includes a superset of the features of SSRS. This means that everything you can
do in SSRS can be done with Power BI Report Server plus the additional capability of
distributing interactive dashboard-style reports through the report web portal.

Power BI Report
Server

13

390 | Power BI Report Server

So, even though Power BI Report Server includes all the features of SSRS, Power BI
Report Server offers several new capabilities that are unique to Power BI and Power BI
Report Server.

With Power BI Report Server, organizations can now deploy interactive and highly
flexible Power BI reports based on an integrated data model in their on-premises or
cloud infrastructure environments alongside the traditional document-style, paginated
reports introduced with SSRS. A Power BI report is a highly interactive report featuring
one or more pages that supports browsing an integrated data model or a data model
hosted in Analysis. Power BI reports are developed using Power BI Desktop optimized
for the report server.

The Power BI mobile app is available at no cost for iOS, Android, and Windows mobile
devices and is used to browse Power BI reports hosted in the Power BI service in
the cloud or hosted on Power BI Report Server. A user authenticates using their own
credentials and can browse their Power BI content in online and offline modes.

SSRS is licensed by purchasing SQL Server. Power BI Report Server, however, is
available through two different licensing models:

1.	 Power BI Premium: Power BI Premium, previously covered in Chapter 11, Data
Warehousing, of this book, includes dedicated capacity for running your Power
BI workload in the cloud. By purchasing Power BI Premium, an organization
automatically gains the rights to deploy Power BI Report Server on an equivalent
number of cores on-premises or in Azure.

2.	 SQL Server Enterprise edition with Software Assurance: An organization can
also obtain the rights to deploy Power BI Report Server by purchasing SQL Server
Enterprise edition with Software Assurance.

Note

To learn more about licensing Power BI Report Server and finding your Power BI
Report Server product key, you can refer to the following documentation: https://
docs.microsoft.com/en-us/power-bi/report-server/find-product-key.

https://docs.microsoft.com/en-us/power-bi/report-server/find-product-key
https://docs.microsoft.com/en-us/power-bi/report-server/find-product-key

Report content types | 391

Report content types
Power BI Report Server includes the following report content types:

•	 Power BI reports: Power BI reports are multipage reports based on an integrated
data model or an Analysis Services data model. Power BI reports are created using
Power BI Desktop optimized for Power BI Report Server. Power BI Desktop is
used to develop the data model and reports that are published to Power BI Report
Server. Reports published to Power BI Report Server can be browsed using the
Power BI mobile app. Power BI reports can include a custom layout optimized for a
mobile device.

•	 Paginated reports: Paginated reports are the traditional content type that you
may be familiar with if you have used SSRS. You use this content type when you
need precise control over the layout, appearance, and behavior of each element in
your report. Users can view a paginated report online, export it to another format,
or receive it on a scheduled basis by subscribing to the report. A paginated report
can consist of a single page or hundreds of pages, based on the dataset associated
with the report. The need for this type of report continues to persist in most
organizations, as well as the other report content types that are now available on
the Microsoft reporting platform.

•	 Mobile reports: SSRS mobile reports are reports optimized for mobile devices
and connected to your on-premises data. Mobile reports are developed using SQL
Server Mobile Report Publisher. Once developed, the mobile reports are published
and shared through the Power BI Report Server web portal and can be browsed
through the web portal as well as via the Power BI mobile app on Android, iOS,
and Windows mobile devices in online and offline modes. Mobile reports feature
a variety of chart types, including time, category, totals, comparison, tree maps,
custom maps, and more. Mobile reports can be configured to use shared datasets
or local Excel files as a data source. Later in this chapter, we'll discuss the process
for creating mobile reports using SQL Server Mobile Report Publisher in more
detail.

392 | Power BI Report Server

•	 KPIs: A KPI is a visual indicator that communicates the amount of progress made
toward a goal or illustrates the relationship between a given metric and a target
value. In Power BI Report Server, a KPI is based on the first row of data from a
shared dataset. Shared datasets can be created and published using Report Builder
or Visual Studio with the SSRS extension. Once the shared dataset has been
created, KPIs can be created in the Power BI Report Server web portal; we'll cover
this in more detail later in this chapter:

Figure 13.1: Power BI Report Server is an enterprise BI solution that supports displaying reports and
KPIs and distributing data visualizations to users on multiple devices

Migrating existing paginated reports to Power BI Report Server
Because Power BI Report Server includes a superset of the capabilities of SSRS,
migrating from SSRS to Power BI Report Server is a great option for allowing an
organization to modernize their SSRS environment. There are several reasons why you
may choose to migrate your SSRS environment(s) to Power BI Report Server:

•	 You wish to take advantage of functionality that is unique to Power BI Report
Server, including interactive and flexible Power BI reports.

Migrating existing paginated reports to Power BI Report Server | 393

•	 You need to migrate from a legacy version of SSRS to Power BI Report Server to
ensure your application is supported.

•	 You would like to take advantage of Power BI Report Server's frequent release
cycle to take advantage of new features.

Figure 13.2: Migrating from SSRS (native mode) to Power BI Report Server requires a few simple steps

Note

SQL Server 2008 Report Services (and later) are supported for migration to Power
BI Report Server.

There is no in-place upgrade from SSRS to Power BI Report Server. Only a
migration is supported.

394 | Power BI Report Server

To migrate from SSRS (native mode) to Power BI Report Server, complete the following
steps.

1.	 Back up the ReportServer and ReportServerTempdb databases.

2.	 Back up the report server configuration files, including:

•	 Rsreportserver.config.

•	 Rswebapplication.config.

•	 Rssvrpolicy.config.

•	 Rsmgrpolicy.config.

•	 Reportingservicesservice.exe.config.

•	 Web.config for the report server ASP.NET application.

•	 Machine.config for ASP.NET if you modified it for report server operations.

3.	 Back up the encryption key using the Reporting Service Configuration Manager.

4.	 Move the ReportServer and ReportServerTempDb databases to the new Database
Engine instance.

Note

If your migration includes using a different Database Engine instance, you must
move the report server database to the new Database Engine instance. If you are
using the same Database Engine instance, then you can skip Step 4.

You can review the following documentation to learn more about moving the
report server databases to another instance: https://docs.microsoft.com/en-us/sql/
reporting-services/report-server/moving-the-report-server-databases-to-another-
computer-ssrs-native-mode?view=sql-server-ver15.

https://docs.microsoft.com/en-us/sql/reporting-services/report-server/moving-the-report-server-databases-to-another-computer-ssrs-native-mode?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/report-server/moving-the-report-server-databases-to-another-computer-ssrs-native-mode?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/report-server/moving-the-report-server-databases-to-another-computer-ssrs-native-mode?view=sql-server-ver15

Exploring new capabilities | 395

5.	 Install Power BI Report Server.

Note

If you're using the same hardware, you can install Power BI Report Server on the
same server as the SSRS instance.

You can review the following documentation to learn more about installing Power
BI Report Server: https://docs.microsoft.com/en-us/power-bi/report-server/install-
report-server.

6.	 Configure the report server using the Report Server Configuration Manager and
connect to the cloned database.

7.	 Perform any cleanup needed for the SSRS (native mode) instance.

Note

You can review the following documentation to familiarize yourself with the
detailed steps for migrating an SSRS (native mode) deployment to a Power BI
Report Server instance: https://docs.microsoft.com/en-us/power-bi/report-server/
migrate-report-server#migrating-to-power-bi-report-server-from-ssrs-native-mode.

To learn more about migrating Reporting Services (SharePoint integrated mode)
to Power BI Report Server, review the following documentation: https://docs.
microsoft.com/en-us/power-bi/report-server/migrate-report-server#migration-to-
power-bi-report-server-from-ssrs-sharepoint-integrated-mode.

Exploring new capabilities
While the features and visualizations available in previous versions of SSRS and Power
BI Report Server continue to be available in the latest release of Power BI Report Server,
there are many new and important features that have been introduced to Power BI
Report Server during the last year. In this section, we'll focus on just a few of the dozens
of important new features released over the past 12 months.

https://docs.microsoft.com/en-us/power-bi/report-server/install-report-server
https://docs.microsoft.com/en-us/power-bi/report-server/install-report-server
https://docs.microsoft.com/en-us/power-bi/report-server/migrate-report-server#migrating-to-power-bi-report-server-from-ssrs-native-mode
https://docs.microsoft.com/en-us/power-bi/report-server/migrate-report-server#migrating-to-power-bi-report-server-from-ssrs-native-mode
https://docs.microsoft.com/en-us/power-bi/report-server/migrate-report-server#migration-to-power-bi-report-server-from-ssrs-sharepoint-integrated-mode
https://docs.microsoft.com/en-us/power-bi/report-server/migrate-report-server#migration-to-power-bi-report-server-from-ssrs-sharepoint-integrated-mode
https://docs.microsoft.com/en-us/power-bi/report-server/migrate-report-server#migration-to-power-bi-report-server-from-ssrs-sharepoint-integrated-mode

396 | Power BI Report Server

Performance Analyzer

Using the Performance Analyzer in Power BI Desktop, you can quickly and easily
discover how each of your report elements, such as visualizations and DAX formulas,
is performing. The Performance Analyzer inspects and displays the processing time
necessary for updating and refreshing all the visuals that a user interaction initiates,
and presents the information so that you can view, drill down, and export the results.
This means that you can quickly identify the performance impact of specific visual
elements.

To display the Performance Analyzer pane, select the View ribbon and then select the
checkbox next to Performance Analyzer to display the Performance Analyzer panel:

Figure 13.3: Enable the Performance Analyzer to study the performance impact of visual elements
within your Power BI report

To start using the Performance Analyzer, click on the Start Recording button. Then,
simply create an interaction in the report, such as selecting a slicer, visualization,
or filter, or click on Refresh visuals in the Performance Analyzer panel. The query
durations generated by the interaction will be displayed visually.

Exploring new capabilities | 397

Each interaction has a section identifier in the pane, describing the action that initiated
the logged entries. In the following figure, the interaction was from a user cross-
highlighting a visualization:

Figure 13.4: The Performance Analyzer is used to measure the performance of specific report elements
and can be used to export the results

The log information includes the duration of the following tasks:

•	 DAX query: If a DAX query was required, the duration of the time between the
visual sending the query and Analysis Services returning the results is displayed.

•	 Visual display: This is the time required for the visual to be drawn on the screen,
including any time necessary for retrieving any web images or geocoding.

•	 Other: This includes the time required for preparing queries, waiting for other
visuals to complete, or performing other background processing.

Note

You can review the following link to learn more about Performance Analyzer
in Power BI Desktop: https://docs.microsoft.com/en-us/power-bi/desktop-
performance-analyzer.

https://docs.microsoft.com/en-us/power-bi/desktop-performance-analyzer
https://docs.microsoft.com/en-us/power-bi/desktop-performance-analyzer

398 | Power BI Report Server

The new Modeling view

The new Modeling view in Power BI Desktop allows you to view and work with complex
datasets that may contain many tables. The new Modeling view now supports multiple
diagram perspectives and bulk editing of columns, measures, and tables:

Figure 13.5: The new Modeling view improves the design and management experience when working
with large and complex data models

Note

You can review the following link to learn more about using the Modeling view,
creating separate diagrams, and setting common properties: https://docs.
microsoft.com/en-us/power-bi/desktop-modeling-view.

Row-level security for Power BI data models

Row-level security (RLS) can now be configured for data models designed using Power
BI Desktop. RLS allows you to restrict data access at the row level for given users using
filters defined within security roles.

RLS can be configured for reports imported into Power BI with Power BI Desktop. You
can also configure RLS for reports that use DirectQuery.

https://docs.microsoft.com/en-us/power-bi/desktop-modeling-view
https://docs.microsoft.com/en-us/power-bi/desktop-modeling-view

Exploring new capabilities | 399

To create a security role, navigate to the Modeling ribbon in Power BI Desktop and
select Manage Roles:

Figure 13.6: Select Manage Roles in the Modeling ribbon to create or modify security roles

Click on Create to create a new security role. Select the table you want to use to apply a
DAX rule and enter the table filter DAX expression. Click on Save:

Figure 13.7: Security roles in Power BI use a DAX filter to restrict access to data at the row level

400 | Power BI Report Server

Once you've created the security role(s), you can use the View as Roles button in the
Modeling ribbon of Power BI Desktop to test your security roles.

After you have saved the Power BI report to Power BI Report Server, you can assign
members to the security roles. In Power BI Report Server, select the ellipsis (…) next to
the report. Then, select Manage.

Select the Row-level security page and click on Add Member. You'll then be able to
select security roles and add users or groups from Active Directory in the username
format (DOMAIN\user).

Note

Learn more about RLS in Power BI Report Server by reviewing the documentation
at https://docs.microsoft.com/en-us/power-bi/report-server/row-level-security-
report-server.

Report theming

Report themes allow you to quickly color your entire report to match a theme or
corporate branding. When you import a theme, each visualization is automatically
updated to use the theme colors. You also have access to the theme colors from the
color palette.

A theme file is a JSON file that includes all of the colors you want to use in your report
along with any default formatting you want to apply to visuals:

{

        "name": "Valentine's Day",

        "dataColors": ["#990011", "#cc1144", "#ee7799", "#eebbcc", "#cc4477",
"#cc5555", "#882222", "#A30E33"],

        "background":"#FFFFFF",

        "foreground": "#ee7799",        "tableAccent": "#990011"

    }

https://docs.microsoft.com/en-us/power-bi/report-server/row-level-security-report-server
https://docs.microsoft.com/en-us/power-bi/report-server/row-level-security-report-server

Managing parameter layouts | 401

To apply a theme to a report in Power BI Desktop, navigate to the Home ribbon, select
Switch Theme, and select Import Theme. Navigate to the JSON file containing your
theme definition and select the theme. Next, click on Open.

Note

You can review the following documentation to learn more about how report
themes work: https://docs.microsoft.com/en-us/power-bi/desktop-report-themes.

New features are added to each release of Power BI Report Server every four
months. For an extensive list of all the new features introduced in Power BI Report
Server, review the following documentation: https://docs.microsoft.com/en-us/
power-bi/report-server/whats-new.

Managing parameter layouts
The primary purpose of report parameters is to filter the data source and limit the
data returned based on what the user needs. In Power BI Report Server, paginated
reports support defining customized parameter layouts in the report design view in
Report Builder and Visual Studio with the Reporting Services extension. You can drag
a parameter to a specific column and row in the Parameters pane to organize the
parameters based on your requirements or modify the size and shape of the parameter
panel.

Note

When using report parameters, use a commonly used value for the parameter's
default value so the report will load immediately when the user accesses the
report.

To customize the report's parameter layout in Report Builder, open the report, and
navigate to the View ribbon. Select the checkbox next to Parameter. This will expose
the Parameters pane near the top of your report.

To add or delete columns and rows from the Parameters pane, right-click anywhere in
the panel and then select the Insert or Delete command to modify the layout.

To move a parameter to a new location in the Parameters pane, simply drag the
parameter to a different cell in the panel.

https://docs.microsoft.com/en-us/power-bi/desktop-report-themes
https://docs.microsoft.com/en-us/power-bi/report-server/whats-new
https://docs.microsoft.com/en-us/power-bi/report-server/whats-new

402 | Power BI Report Server

To add a new parameter to the pane, either right-click on an empty cell in the
Parameters panel and click on Add Parameter or right-click on Parameters in the
Report Data panel and then click on Add Parameter:

Figure 13.8: The Parameters panel can be modified by simply right-clicking anywhere in the panel

Developing KPIs
A KPI is an indicator that illustrates the progress made toward a goal. KPIs are great
for users who wish to quickly evaluate and monitor the progress made toward a
measurable goal.

Note

KPIs are only accessible with SSRS Enterprise edition and Power BI Report Server.

Developing KPIs | 403

A KPI can be defined manually or based on the first row of a shared dataset. A shared
dataset enables you to manage the settings for a dataset separately from reports and
other report server items. In the following example, we will walk through the steps
required to create a shared dataset using Report Builder. Then, we'll define the KPI in
the Power BI Report Server portal:

1.	 First, open Report Builder.

2.	 Select New Dataset and browse to the data source you would like to use to create
the new dataset. Then, click on Create:

Figure 13.9: A shared dataset is the data source for a KPI in Power BI Report Server

3.	 Select a shared data source to use for your shared dataset.

4.	 You can use Query Designer to build your query or click on Edit as text to copy
and paste in a previously written T-SQL select statement. Bear in mind that
only the first row will be used to populate the KPI, so format your query results
accordingly.

404 | Power BI Report Server

5.	 Click on File and select Save As to save the new dataset to the Report Server.

6.	 In the Power BI Report Server portal, navigate to the folder where you would like
to create the KPI. Click on the +New button and select KPI:

Figure 13.10: Creating KPIs directly in the Power BI Report Server portal

7.	 In the New KPI screen, specify KPI name, then select the Value format, Value,
Goal, Status, Trend set, and Visualization settings. You can also specify related
content to link to from the KPI:

Figure 13.11: Creating a new KPI using Power BI Report Server

Publishing reports | 405

8.	 Click on Create when you're done.

Note

You can review the following documentation for more details on creating a KPI in
Power BI Report Server: https://docs.microsoft.com/en-us/sql/reporting-services/
working-with-kpis-in-reporting-services?view=sql-server-ver15.

Publishing reports
Power BI Desktop optimized for the report server is the development tool for Power
BI reports. Users wishing to create and/or edit Power BI content should ensure they
have installed the correct version of Power BI Desktop, which is compatible with their
installation of Power BI Report Server. To download and install the compatible version
of Power BI Desktop, navigate to the Power BI Report Server web portal, click on the
Download button in the top-right corner, and select Power BI Desktop. This will open
your web browser to the page with the link to download the correct version of Power BI
Desktop optimized for the report server:

Figure 13.12: You must use the correct version of Power BI Desktop to ensure compatibility with your
installation of Power BI Report Server

After installing Power BI Desktop optimized for report server, you're ready to begin
developing Power BI content for Power BI Report Server.

https://docs.microsoft.com/en-us/sql/reporting-services/working-with-kpis-in-reporting-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/working-with-kpis-in-reporting-services?view=sql-server-ver15

406 | Power BI Report Server

Once you've created your Power BI content, you're ready to publish the Power BI report
to the report server. In Power BI Desktop, click on File, select Save as, and then select
Power BI Report Server, as shown in the following screenshot:

Figure 13.13: Publish your Power BI reports to Power BI Report Server by clicking on Save as

In the Power BI Report Server selection window, either select a recently used report
server or enter a new report server address (for example, http://reportserver/reports
or https://reportserver/reports). Then, click on OK.

Navigate to the folder on your report server where you would like to save the Power
BI report. Specify the name of your report and then click on OK to save the report to
Power BI Report Server.

Managing report access and security
Like SSRS, Power BI Report Server provides an authentication subsystem and role-
based authorization model to determine which users can perform specific tasks and
access items on the report server. Role-based authorization categorizes the set of tasks
into roles that the user can perform.

Power BI Report Server installs with predefined roles that you can use to grant access
to report server operations. Each predefined role aligns with a collection of tasks
related to the role. Groups and user accounts can be assigned to the roles to provide
immediate access to report server items and operations.

http://reportserver/reports
https://reportserver/reports

Managing report access and security | 407

The following table describes the predefined scope of the roles:

Table 13.14: Roles and their descriptions

Note

The predefined roles can be modified or replaced with custom roles based on your
requirements. To learn more about roles, review the following documentation:
https://docs.microsoft.com/en-us/sql/reporting-services/security/role-definitions-
predefined-roles?view=sql-server-ver15.

The following items in Power BI Report Server can be secured:

•	 Folders

•	 Reports (including Power BI reports, paginated reports, and mobile reports)

•	 Report models

•	 Resources

•	 Shared data sources

•	 Shared datasets

When you create a role assignment, you're creating a security policy that determines
whether a user or group can access or modify a specific report server item or perform a
task. Role assignments are scoped at the item level or system level.

https://docs.microsoft.com/en-us/sql/reporting-services/security/role-definitions-predefined-roles?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/security/role-definitions-predefined-roles?view=sql-server-ver15

408 | Power BI Report Server

To assign a user or group access to an item role, complete the following steps:

1.	 Navigate to the Power BI Report Server web portal and locate the report item you
would like to add a user or group to. The report item could be a folder, report, or
another resource.

2.	 Select the … (ellipsis) on an item.

3.	 Select Manage.

4.	 Select the Security tab.

5.	 Select Customize security then select Add group or user.

6.	 Enter the user or group account in Group or user (for example, domain\user or
domain\group).

7.	 Select the role definition(s), that define(s) how the user(s) should access the item.
Then, click on OK:

Figure 13.15: Creating a role assignment to grant a user or group of users access to a report item

Note

You can review the following documentation to learn more about granting
permissions on Power BI Report Server: https://docs.microsoft.com/en-us/sql/
reporting-services/security/granting-permissions-on-a-native-mode-report-
server?view=sql-server-ver15.

https://docs.microsoft.com/en-us/sql/reporting-services/security/granting-permissions-on-a-native-mode-report-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/security/granting-permissions-on-a-native-mode-report-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/security/granting-permissions-on-a-native-mode-report-server?view=sql-server-ver15

Publishing mobile reports | 409

Publishing mobile reports
Once you've developed a mobile report using SQL Server Mobile Report Publisher, click
on the Save Mobile Report As button in the Navigation panel:

Figure 13.16: To publish a mobile report, click on the Save Mobile Report As button

Mobile reports can be saved locally or to the report server. When you select Save
to server, you can specify the new report name, the server, and then browse to the
location where the report should be saved. Click on Save to save the mobile report to
the specified report server.

Viewing reports in modern browsers
The web portal for Power BI Report Server is a web-based experience. In the portal, you
can view Power BI reports, paginated reports, mobile reports, and KPIs. The web portal
is also used to administer a report server instance.

To access the web portal, type in the web portal URL in the address bar of the browser
window. When you access the web portal, the folders, links, reports, and options you
see will depend on the permissions you have on the Power BI Report Server. To perform
a task on the report server, a user should be assigned to a role with the appropriate
permissions depending on the task. For example, a user wishing to simply view reports
and subscribe to reports should be assigned to the Browser Role.

The Power BI Report Server web portal groups content by the following categories:

•	 KPIs

•	 Mobile reports

•	 Paginated reports

•	 Power BI desktop reports

410 | Power BI Report Server

•	 Excel workbooks

•	 Datasets

•	 Data sources

•	 Resources

Power BI Report Server also allows you to search for report content based on your
permissions. Use the search bar by entering a search term and then pressing Enter:

Figure 13.17: Searching for report content by entering a search term

The following browsers are supported for managing and viewing Power BI Report
Server:

Table 13.18: Supported browsers

Note

You can learn about what browser versions are supported for managing and
viewing Power BI Report Server and the Report Viewer controls here: https://docs.
microsoft.com/en-us/power-bi/report-server/browser-support.

https://docs.microsoft.com/en-us/power-bi/report-server/browser-support
https://docs.microsoft.com/en-us/power-bi/report-server/browser-support

Viewing reports in modern browsers | 411

You can also add comments to Power BI reports, paginated reports, and mobile reports
directly in the report server web portal.

To add or view a comment, open a report in the web portal. Click on the Comments
button in the top-right corner and enter your comment. Click on Post Comment to
post your comment. The comments live with the report and anyone with the right
permissions can view the comments for the report:

Figure 13.19: Using the Comments pane to view and add comments or to reply to existing comments

412 | Power BI Report Server

Viewing reports on mobile devices
The Power BI mobile app delivers live, touch-enabled access to your on-premises
Power BI Report Server. You can connect up to five different Power BI Report Server
instances at a time using the Power BI mobile app. The Power BI mobile app can be
used to deliver three different types of content to mobile devices with Power BI Report
Server:

•	 Power BI reports: Power BI reports can be specially optimized for viewing on
a mobile device and via web browsers simultaneously. In Power BI Desktop on
the View ribbon, use Phone Layout to customize how the report will appear on
a mobile device. Use Desktop Layout to design how the report will look on your
desktop:

Figure 13.20: Power BI reports are developed using Power BI Desktop optimized for the report server
and can also be optimized for viewing via mobile devices

Note

You can review the following documentation to learn more about using Power BI
Desktop to optimize Power BI reports for a mobile device: https://docs.microsoft.
com/en-us/power-bi/desktop-create-phone-report.

https://docs.microsoft.com/en-us/power-bi/desktop-create-phone-report
https://docs.microsoft.com/en-us/power-bi/desktop-create-phone-report

Viewing reports on mobile devices | 413

•	 Mobile reports: Mobile reports are specially optimized reports designed for
viewing on a mobile device using the Power BI mobile app. Mobile reports are also
able to be accessed via the web browser:

Figure 13.21: Mobile reports hosted on Power BI Report Server
can be viewed using the Power BI mobile app

414 | Power BI Report Server

•	 KPIs: KPIs are great for tracking the performance of a given metric in relation to a
specified goal or threshold. KPIs can be viewed through the Power BI mobile app
as well as your web browser:

Figure 13.22: KPIs can be shared through the Power BI mobile app

Note

To learn more about viewing Power BI reports, mobile reports, and KPIs in the
Power BI mobile app and connecting to an on-premises report server, review
the following article and tutorials: https://docs.microsoft.com/en-us/power-bi/
consumer/mobile/mobile-app-ssrs-kpis-mobile-on-premises-reports.

https://docs.microsoft.com/en-us/power-bi/consumer/mobile/mobile-app-ssrs-kpis-mobile-on-premises-reports
https://docs.microsoft.com/en-us/power-bi/consumer/mobile/mobile-app-ssrs-kpis-mobile-on-premises-reports

Exploring Power BI reports | 415

Exploring Power BI reports
Once you've published a Power BI report to your Power BI Report Server instance, a
user can access the report by navigating to the report server using their browser:

Figure 13.23: To view a Power BI report, navigate to the report server portal in your browser, and click
on the report you would like to view

Power BI reports can be viewed on a variety of device types with many different screen
sizes and aspect ratios. To adjust the display options, use the View menu to optimize
the report view. You can choose Fit to page, Fit to width, or Actual size. You can also
choose to hide the Selection panel and Bookmarks panel to increase the screen real
estate for the report.

416 | Power BI Report Server

Using the FILTERS panel

If the report includes filters, the FILTERS panel can be used to interact with the
filters. Filters can be applied at the visual level, page level, and report level. To expose
the visual-level filters in the FILTERS panel, select a visual in the Power BI report by
clicking on the visual:

Figure 13.24: The FILTERS pane allows you to view and interact with filters in the Power BI report

Crossing-highlighting and cross-filtering

In a Power BI report, the visualizations are designed to interact with each other by
default. By selecting one or more values in a visualization, other visualizations that
use the same value will change based on the selection. This behavior is called cross-
highlighting and cross-filtering.

Exploring Power BI reports | 417

Sorting a visualization

Visuals in a Power BI report can be sorted based on the visualization attributes. Visuals
can be sorted into ascending or descending order using the fields included in the
visualization. To expose the sorting controls, hover over the visual and select the ellipsis
(…) in the top-right corner of the chart.

Displaying a visualization's underlying data

The underlying data for a given visualization can be displayed by selecting Show data.
Select a visual, click on the ellipsis (…) in the top-right corner of the visual, and select
Show data. This will display the dataset used to construct the following report next to
the visualization:

Figure 13.25: Exposing the more options menu by selecting the ellipsis (…) in the top-right
corner of a visualization

418 | Power BI Report Server

Drill-down in a visualization

Power BI reports can also be configured to support drill-down behavior across
hierarchies and other fields. To interact with a drill-down-enabled visualization, hover
over the visual to expose the drill-down controls. The drill-down controls enable you
to go to the next level of a hierarchy, expand all the data points to the next level in the
hierarchy, or drill down to the next level of a hierarchy on a selected data point:

Figure 13.26: Drill down in a visualization to focus your analysis from a high level to a lower level

Note

To learn more about exploring and interacting with Power BI reports, review the
following article: https://docs.microsoft.com/en-us/power-bi/consumer/end-user-
reading-view.

Automating report delivery with subscriptions
Power BI Report Server allows you to create subscriptions to reports. A subscription
is a standing request to deliver a report in a specified application file format at a
specific time or in response to an event. As opposed to accessing a report on demand,
subscriptions are used to schedule and automate the delivery of a report. Reports can
be delivered to an email inbox or a file share.

There are two types of subscriptions in Power BI Report Server:

•	 Standard subscriptions

Standard subscriptions are created and managed by individual users. Standard
subscriptions are useful for users when they need a frequently viewed report
delivered on a regular basis with a consistent file format and set of parameter
values.

https://docs.microsoft.com/en-us/power-bi/consumer/end-user-reading-view
https://docs.microsoft.com/en-us/power-bi/consumer/end-user-reading-view

Automating report delivery with subscriptions | 419

•	 Data-driven subscriptions

Data-driven subscriptions are subscriptions that obtain subscription information
at runtime by querying an external data source. The external data source provides
information to specify a recipient, parameter values, and/or application format.
Data-driven subscriptions are typically created and managed by the report server
administrator.

Subscriptions can be delivered in the following formats:

•	 XML file with report data

•	 CSV file

•	 PDF file

•	 MHTML file

•	 Microsoft Excel file

•	 TIFF file

•	 Microsoft Word file

Note

If you plan to deliver your report as a subscription, test the subscription early on in
the design process.

Also, if you are required to deliver the report in a specific format, test the export
format early on in the design process. Feature support varies based on the
renderer you choose.

420 | Power BI Report Server

In the following table, you can find a few use cases related to Power BI Report Server
subscriptions:

Table 13.27: Use cases related to Power BI Report Server

Note

You can review the following tutorial to learn how to create a data-driven
subscription: https://docs.microsoft.com/en-us/sql/reporting-services/create-a-
data-driven-subscription-ssrs-tutorial?view=sql-server-ver15.

To learn more about subscriptions and automating the delivering of reports,
review the following documentation: https://docs.microsoft.com/en-us/sql/
reporting-services/working-with-subscriptions-web-portal?view=sql-server-ver15.

Pinning report items to the Power BI service
With Power BI Report Server, paginated report items can be pinned to the Power BI
service in the cloud as a new tile. This capability allows you to integrate report items,
such as charts, gauges, or maps, with Power BI dashboards you have deployed in the
cloud.

To enable pinning paginated report items to the Power BI service, you must first
complete the following steps:

1.	 Configure Power BI Report Server for Power BI integration using Report Server
Configuration Manager.

2.	 Configure your browser to allow pop-up windows from your Power BI Report
Server site.

https://docs.microsoft.com/en-us/sql/reporting-services/create-a-data-driven-subscription-ssrs-tutorial?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/create-a-data-driven-subscription-ssrs-tutorial?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/working-with-subscriptions-web-portal?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/working-with-subscriptions-web-portal?view=sql-server-ver15

Pinning report items to the Power BI service | 421

3.	 The report should be configured for stored credentials if the pinned item should
refresh on an automated schedule using a Reporting Services subscription.

Note

To learn more about configuring Power BI Report Server for Power BI integration,
including troubleshooting common issues, you can review the following: https://
docs.microsoft.com/en-us/sql/reporting-services/pin-reporting-services-items-to-
power-bi-dashboards?view=sql-server-ver15.

To pin the report item to Power BI, click on the Pin to Power BI button in the toolbar.
If you're not signed into the Power BI service, you'll be prompted to sign in. Next, you'll
be prompted to select the report item you'd like to pin. If there are no report items
compatible for pinning to Power BI, a notification window will appear informing you:

Figure 13.28: Click on the Pin to Power BI button in the toolbar to select the report item you would like
to pin to Power BI

After selecting the report item, the Pin to Power BI Dashboard window will appear. You
will need to specify the Group (App Workspace), Dashboard, and Frequency of updates
settings. Click on Pin.

https://docs.microsoft.com/en-us/sql/reporting-services/pin-reporting-services-items-to-power-bi-dashboards?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/pin-reporting-services-items-to-power-bi-dashboards?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/pin-reporting-services-items-to-power-bi-dashboards?view=sql-server-ver15

No SQL Server 2019 book is complete without a discussion of Azure's role regarding
modernization and the data platform. Research data puts the percentage of workloads
in the cloud by 2020 at more than 80% (according to the Cloud Vision 2020 study
carried out by LogicMonitor: https://www.logicmonitor.com/resource/the-future-
of-the-cloud-a-cloud-influencers-survey/). The cloud's cost savings in a shorter
time to market, the ability to scale without hardware limitations, and fewer resource
demands on IT teams, all provide an opportunity that more and more businesses are
taking advantage of. Just a decade ago, it was a common scenario for the database
administrator to wait for a server to be made available by the infrastructure team
before they could perform their work, and then there was a similar waiting period
for developers waiting for other technical teams to complete their work. The cloud
grants access to resources and allows the database administrator to create a database
in a matter of minutes instead of days or weeks. The developer can gain access to
their working environment with fewer roadblocks and more consistency between
environments, eliminating the downtime that was once a common issue.

Modernization to the
Azure Cloud

14

https://www.logicmonitor.com/resource/the-future-of-the-cloud-a-cloud-influencers-survey/
https://www.logicmonitor.com/resource/the-future-of-the-cloud-a-cloud-influencers-survey/

424 | Modernization to the Azure Cloud

The SQL data platform in Azure
Azure is not only about services or acting as a Platform as a Service (PaaS). Azure's SQL
data platform offerings help those who want to make the transition to the cloud but
may have critical requirements that cause hesitation when considering Azure databases.

Azure SQL Database managed instance

Azure SQL Database Managed Instance offers the ability to "lift and shift" to a
"managed" PaaS with only a few requirements, such as when moving a set of services
to the cloud that are hosted on one or more isolated virtual machines inside a virtual
network subnet. This general-purpose managed instance has shifted the management
of the platform to the instance level, granting greater control over advanced features,
and capabilities that are closer to on-premises functionality in SQL Server 2019,
allowing for greater flexibility. A managed instance offers the cloud option for
connectivity to Azure Analysis Services and Power BI for reporting.

Managed instance allows the user to always run on the latest release, eliminating the
need to patch and upgrade. Currently, one managed instance can support:

•	 1,000 user databases

•	 4 TB of storage

•	 A virtual network for isolation

•	 SQL Server Agent and Agent Jobs

•	 Linked servers, for those who are using cross-database joins

•	 Azure Active Directory integration

•	 Database Mail

•	 Common Language Runtime (CLR)

•	 Filegroups

Deployment of a managed instance in Azure | 425

To simplify migration to Azure, managed instance offers the opportunity to migrate
with fewer changes required.

When deploying a managed instance, there is a support infrastructure, including
a virtual network (VNet) that contains a Network Security Group (NSG), with the
managed instance deployed as part of a dedicated subnet. The subnet for a managed
instance must have at least 16 dedicated IP addresses configured, but best practice
recommends at least 32. This isolation offers a protected silo for your managed
instance, but you must create inbound and outbound security rules before any other
rules are deployed. The data endpoints to redirect traffic as part of port 1433 and 11000-
11999 are part of the requirements for redirect connections. One of the differences
between other PaaS offerings and a managed instance is that no service endpoint is
configured as part of a managed instance due to the VNet configuration.

Deployment of a managed instance in Azure
There are a number of requirements for deploying a managed instance:

•	 A new or existing resource group

•	 A new or existing VNet

•	 A dedicated subnet

•	 A routing table with at least 16 dedicated IP addresses

426 | Modernization to the Azure Cloud

Managed instance via the Azure portal

Once you've created the resource group that you wish to deploy to or have chosen to
use an existing resource group, click on Add. Then, in the search bar, type in Azure SQL
Managed to return the option to add a managed instance:

Figure 14.1: Entering the requirements for a managed instance

As you fill in the information for your managed instance, be sure to follow the
requirements for passwords. Also, use collation matching if the managed instance will
be used for migration from an existing database. You will also need to make a new VNet
to create the subnet in if one doesn't already exist.

Deployment of a managed instance in Azure | 427

Managed instance via templates

To simplify the deployment of managed instances, you can utilize prebuilt templates
available from Azure. The following command creates an SQL Server Management
Studio (SSMS) jump box to ease management, along with the managed instance. If a
new resource group is required, a simple command can create one:

PowerShell:

New-AzResourceGroup -Name <resource-group-name> -Location <resource-
grouplocation>

Bash CLI:

az group create --name <resource-group-name> --location <resource-
grouplocation>

You can also create the managed instance from the command line with direction to the
available GitHub template:

PowerShell:

New-AzResourceGroupDeployment -ResourceGroupName <resource-group-
name> -TemplateUri	 https://raw.githubusercontent.com/Azure/azure-
quickstarttemplates/master/201-sqlmi-new-vnet-w-jumpbox/azuredeploy.json

Bash CLI:

az group deployment create --resource-group <my-resource-group> --templateuri
https://raw.githubusercontent.com/Azure/azure-quickstart-templates/
master/201-sqlmi-new-vnet-w-jumpbox/azuredeploy.json

As automation and DevOps become more central in the cloud administrator's world,
more advanced build options in Azure become available. The deployment of a managed
instance can be automated with an interactive script to make things simple, either
in Bash (Linux) or PowerShell (Linux). As a virtual cluster is implemented as part of
the managed instance (and more than one managed instance can be part of a virtual
cluster), scripting from the command line reveals the layers in the architecture.

Using the Azure CLI with a Bash script, you can create a managed instance, passing in
the variables for the required infrastructure as follows:

az sql mi create -n $instancename -u $username -p $password \
-g $groupname -l "$zone" \

 --vnet-name $vnet --subnet $snet

428 | Modernization to the Azure Cloud

Notice in the Bash and Azure CLI versions that abbreviated arguments are used, such as
-u instead of –user and -p instead of –password. Both full commands and abbreviations
are acceptable, and mixed usage also has no impact on the success of deployment from
the command line or a script.

In PowerShell, the same command to create the managed instance can be done, this
time incorporating an Azure Resource Manager (ARM) template but still passing in
variables for a Bash script to fulfill. PowerShell uses the New-AzResourceGroupDeployment
command rather than the Azure CLI az sql mi create command:

New-AzResourceGroupDeployment '

 -Name MyDeployment -ResourceGroupName $resourceGroup '

 -TemplateFile './create-managed-instance.json' '

 -instance $name -user $user -pwd $secpasswd -subnetId $subnetId

The ARM template could be used with either command, as could the simplified
requirement variables without the template. The template, a JSON file, looks like the
following:

{

 "$schema": "https://schema.management.azure.com/schemas/2014-04-
01preview/deploymentTemplate.json#", "contentVersion": "1.0.0.1",

 "parameters": {

 "instance": {

 "type": "string"

 },

 "user": {

 "type": "string"

 },

 "pwd": {

 "type": "securestring"

 },

 "subnetId": {

 "type": "string"

 }

 },

Deployment of a managed instance in Azure | 429

 "resources": [

 {

 "name": "[parameters('instance')]",

 "location": "West Central US",

 "tags": {

 "Description":"GP Instance with custom instance collation -

Serbian_Cyrillic_100_CS_AS"

 },

 "sku": {

 "name": "GP_Gen4",

 "tier": "GeneralPurpose"

 },

 "properties": {

 "administratorLogin": "[parameters('user')]",

 "administratorLoginPassword": "[parameters('pwd')]",

 "subnetId": "[parameters('subnetId')]",

 "storageSizeInGB": 256,

 "vCores": 8,

 "licenseType": "LicenseIncluded",

 "hardwareFamily": "Gen4",

 "collation": "Serbian_Cyrillic_100_CS_AS"

 },

 "type": "Microsoft.Sql/managedInstances",

 "identity": {

 "type": "SystemAssigned"

 },

 "apiVersion": "2015-05-01-preview"

 }

]

}

430 | Modernization to the Azure Cloud

The ARM template ensures that all aspects of the deployment requirements are met,
and that less is required at the command line. Sizes, the number of cores, the license
type, and the collation are listed. This ensures that the configuration matches what will
be required if and when migration of an existing database to the new managed instance
is performed.

Migrating SQL Server to Managed Instance
Microsoft offers numerous options when migrating databases to Azure SQL Database
Managed Instance. A migration project can be overwhelming. As such, it's important to
choose the correct service model and service tier. There are a few, and your choice of
them will depend on the use case for your managed instance:

•	 Cross-database joins

•	 CLR

•	 SQL Server Agent Jobs

•	 Log shipping

•	 Global temporary tables

These are some factors to consider when deciding on your managed instance.
Additionally, unlike a virtual machine solution, managed instance is a Platform-as-
a-Service (PaaS) solution, ensuring that you don't have to support the patching and
upgrading of the database.

It is crucial before undertaking a migration to a Managed Instance that any
compatibility issues due to deprecated versioning and features, such as 2008/R2/2012
are identified and resolved beforehand. SQL Server 2008/R2 contains a significant list
of deprecated features to consider in multiple areas:

•	 Database Engine

•	 Integration Services

•	 Analysis Services

•	 Reporting Services

It is important to read a full assessment, no matter the tool chosen for the migration,
ensuring all compatibility issues are identified before moving forward with a migration
to Azure Managed Instance.

Migrating SQL Server to Managed Instance | 431

It's also a good idea to perform extensive workload testing and identify any high latency
issues that can be addressed before the migration attempt. Although many on-premises
features are supported as part of Azure managed instance, it's important to thoroughly
understand the demands of your workloads, compatibility parameters, and latency
when the database is hosted in the cloud. This includes any network latency that may
not be quickly apparent in the day-to-day usage. Consider performing a proof-of-
concept with a smaller workload of varying usage from your on-premises SQL Server
databases and avoid those running at 100% utilization in their current environment.
This allows you to focus on databases that are prepared to move to the cloud and
address incompatible features that often are in place in multiple scenarios before
commencing more complex migration opportunities.

The preferred methods provided by Microsoft for migration to a managed instance in
Azure are:

•	 Azure Database Migration Service (DMS)

•	 Data Migration Assistant (DMA)

•	 Transactional Replication

•	 Bulk Load

Azure Database Migration Service (DMS)

Azure DMS is a convenient, robust, fully managed service for migrating multiple
database platforms to Azure databases. As the DMS is a cloud-based service that allows
for online migrations, it can lessen downtime involved with a migration. The DMS also
has an offline option for a one-time migration option, able to handle database versions
from SQL Server 2005 to 2017. Having a service in Azure removes the demands to install
software on a server or workstation and places the resource demands squarely on the
cloud, eliminating some of the demands required with other solutions.

Application Connectivity

As with any connection between on-prem and the Azure cloud, you can use a VPN or
Azure Express Route configured with a secure virtual network from the Azure Resource
Manager deployment model. Once this is set up, you must ensure rules are set up to not
block the ports required for communication ports and the DMS can access the source
databases you wish to migrate.

432 | Modernization to the Azure Cloud

The Managed Instance to be migrated to will reside inside a Virtual Network (Vnet) and
your cloud applications can connect to the database inside this VNet, connect through
a different VNet than the Managed Instance, or if continuing to reside on-prem, the
application can use a site-to-site VPN. If latency is an issue, this would be the reason to
use an Express Route to gain additional bandwidth.

If an Azure App Service is to be used to connect to the Managed Instance, then a private
IP address will be the only connection option and further configuration will be required
once the Managed Instance migration is completed.

Requirements for the DMS

To use the Azure Data Migration Service, there is a requirement to set up an instance
of the Azure Database in a secondary resource group from the virtual network you've
configured to work with the DMS. This Azure database must have the CONTROL
DATABASE permissions for it to use the DMS and allow it to perform the migration
steps.

The Azure DMS uses the Data Migration Assistant (DMA) to provide assessment
reports to get recommendations and guidance for the migration. Unlike other
tools, DMS offers a very distinct set of migration use cases that can provide value to
organizations that may not have realized that there are options for them to migrate to
Azure:

•	 PostgreSQL to Azure SQL Database for PostgreSQL

•	 MySQL to Azure SQL Database for MySQL

•	 Amazon Relational Database (RDS) to Azure SQL or Azure SQL Managed Instance

•	 MongoDB to Azure Cosmos DB's API for MongoDB (either online or offline)

To remove roadblocks to a successful Azure Managed Instance migration, compatibility
and resource usage of the on-prem SQL Server should be collected to ensure unique
configurations, features and workloads have been identified.

Figure 14.2: High-level migration steps from on-premises to Managed Instance

Migrating SQL Server to Managed Instance | 433

Data Migration Assistant

The Data Migration Assistant, (DMA), to be used in conjunction with the DMS, must
be installed locally. A Managed Instance that the on-prem database will be migrated to
must be created beforehand in the Azure portal.

Managed Instance Sizing

Before moving past the app connectivity step, a baseline should be gathered from the
on-prem database to ensure that the correct size is chosen for the Azure Managed
Instance to be deployed. Along with database size, critical information about CPU
usage, IOPs, IO latency, memory, TempDB and top executions should be gathered. A
Managed Instance, unlike an on-prem SQL Server or a PaaS Azure DB, isn't directly
accessible through SQL Server Management Studio, (SSMS). The best way to work with
the database as a DBA is to create a VM inside the same resource group and subnet as
the Managed instance and use it as a jumpbox with the tools needed to work with the
databases. You also won't have access to a Managed Instance with Remote Desktop,
(RDP).

The best size estimates take the Managed Instance pricing model into consideration,
ensuring to scale to the size and latency SLA requirements for the Managed Instance.
Take the time necessary to understand Managed Instance VM characteristics and
service tiers (i.e. general purpose vs. business critical).

Recent offers of 2 vCore Managed Instance also gives greater opportunity to choose
this as an option where before greater requirements of vCore may have limited the
choice.

Migration

Once you've selected and deployed the correctly sized Managed Instance, choose the
best method for your database migration. An additional benefit of Managed Instance is
that you can use a native backup from an on-premises database (.bak) file and restore
via a URL. This method takes advantage of Azure storage as the go between for the
on-prem to the Managed Instance for the backup file(s). There are some restrictions
and added requirements depending on the database version or if you are using
Transparent Data Encryption (TDE) so it's best to read through all documentation as
part of Native Restore from URL to ensure success.

Following the steps to assess the migration and correct any issues, the next step is
to perform the migration to Azure Managed Instance. If no issues are found and the
migration is completed successfully, then the only step left is to monitor the new
Managed Instance.

434 | Modernization to the Azure Cloud

Monitoring Managed Instance

Unlike when issues arise on a regular basis, during this step-by-step migration, a
baseline exists for comparison. This should be your first step and ongoing criteria as the
new Managed Instance is under observation.

The same process of collecting memory, CPU and IO latency/IOPs should be followed
and compared to the baseline. Acceptable variations in scoring should be decided and
regular reviews should be held with users to avoid reactive challenges.

Just as with on-prem SQL Servers, the workload and application can benefit from
optimization in code and database storage choices. The Query Store will also be
able to identify where performance gains can be achieved. Azure Intelligent Insights
uses artificial intelligence to compare database workloads, notifying of performance
degradation and providing insight on issues and excessive wait times. For more, see
the documentation here: https://docs.microsoft.com/en-us/azure/sql-database/
sql-database-intelligent-insights.

Monitoring and enforcing security is of the upmost importance. Although the topic is
too complex to go into this high-level chapter, there are white papers and documents
to help the cloud DBA implement a secure Managed Instance. See the documentation
here: https://docs.microsoft.com/bs-latn-ba/azure/sql-database/sql-database-
managed-instance-threat-detection and here: https://docs.microsoft.com/bs-latn-ba/
azure/sql-database/sql-database-advanced-data-security.

Secondary Options for Migration

There are two other options for migration from on-prem SQL Server to an Azure
Managed Instance. Transactional Replication can be used to migrate from version
SQL Server 2012, (SP2+)-2017 and offers the ability for ongoing synchronization of
transactions until a desired cutoff point. Bulk Load is also still an option for any SQL
Server version from 2005 on, to load data from an on-prem SQL Server to an Azure
Managed Instance. Both options will benefit from an Azure Express Route connection
to remove latency for ongoing traffic between the on-prem and cloud databases.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights
https://docs.microsoft.com/bs-latn-ba/azure/sql-database/sql-database-managed-instance-threat-detection
https://docs.microsoft.com/bs-latn-ba/azure/sql-database/sql-database-managed-instance-threat-detection
https://docs.microsoft.com/bs-latn-ba/azure/sql-database/sql-database-advanced-data-security
https://docs.microsoft.com/bs-latn-ba/azure/sql-database/sql-database-advanced-data-security

Migrating SQL Server to Managed Instance | 435

SQL Server in Azure virtual machines

For those databases that possess complex requirements not supported in Azure SQL
Database or Azure Managed Instance, there is still the option to migrate to the cloud.
This can be done by utilizing Infrastructure as a Service (IaaS) services such as virtual
machines. SQL Server 2019 is no different, in that it can be deployed in an Azure VM,
either with Windows, Linux, or a Docker image. This option grants incredible control
to the business to build what they need, scale up as needed, and still have many of the
benefits of the cloud:

Figure 14.3: Management differences between on-premises, IaaS, and PaaS solutions

436 | Modernization to the Azure Cloud

The added benefit of an Azure VM over an on-premises one is the ability to scale to
larger VMs as needed without the purchase of on-premises hardware. The hardware is
maintained by Azure, only requiring the operating system, up to the applications, to be
managed by the user. For third-party applications that require a specific version of a
database, or where an application isn't offered as a service inside Azure and should be
moved to the cloud, Azure VM offers an option to solve this.

Virtually managed hosts make for simplified management from traditional server
configuration and to use Azure VM. This removes another layer to the infrastructure
support and purchasing that an on-premises VM solution would require. One of the
ways that Azure VMs simplify management for the team is by offering automated
patching, backups and diagnostics using the SQL Server IaaS Agent.

Creating an Azure VM from the Azure portal
When adding a VM to Azure, it is deployed inside a resource group. It can either
be deployed as part of an existing group or to a new group. Inside the Azure portal
resource group, you can start the portal deployment of a VM by:

•	 Clicking on Resource Groups, choosing the group to deploy to.

•	 Clicking on Add.

•	 In the search bar, typing in VM or virtual machine (note that there are several
services and options that will be listed in the dropdown).

Once you've proceeded to this step, verify your requirements and type in SQL Server
in the search window. The VM images for SQL Server 2019 will quickly display for the
operating systems available, including Red Hat, Ubuntu, and Windows. Some images will
include both the host operating system and database configured to support a relational
database as part of the image. If a specific operating system version is required, the
CLI (az commands) may provide the correct VM image to meet your needs. This will be
covered later in the chapter.

Once you have chosen the version of the VM image you wish to install, the portal wizard
will prompt you to either go through the configuration settings via the Create button or
allow you to skip this by choosing the Start with a pre-set configuration option:

Creating an Azure VM from the Azure portal | 437

Figure 14.4: Prompt for creating a VM in the Azure portal

In our example, we've chosen to create a VM with Windows Server 2016 and an SQL
Server 2019 image. The first screen will ask you to name the VM and verify the resource
group and other basic settings:

Figure 14.5: Creating an Azure VM in the Azure portal interface

438 | Modernization to the Azure Cloud

The name of the VM must be unique to the resource group. If, for some reason, you've
chosen the incorrect VM image, you can update it using the Image dropdown menu.
You can also change the size of the image if the default size isn't appropriate for your
deployment and you need to scale up. Not all sizes are available for all VM images,
but there is a wide array of sizes to suit almost any need. The M Series is great for
memory intensive loads, with up to 4 TB of memory and 128 vCore. You can see some
recommendations here: https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/sql/virtual-machines-windows-sql-performance.

Storage options for VMs
Once you have finished choosing these options, you will be asked to choose the type
of disk you would like for storage on your VM. You have the options of a standard hard
disk, standard solid-state disk (SSD), premium SSD, or even the new private preview of
Ultra Disk. Ultra Disk is a new SSD made for IO-intensive loads that has sub-millisecond
latency times. These new disks will autotune workloads without the requirement to
restart a VM and will provide incredible performance for workloads on SQL Server
and other database platforms. The disks will come in sizes from 4-64 TB and should be
considered for any database that requires top IO performance:

Figure 14.6: IOPS ranges on Ultra Disk SSD from Azure

Diagnostics and advanced options
The Advanced tab lets you update to Ephemeral OS disks, which only save to the local
VM storage and work great for stateless workloads, as they don't save to Azure cloud
storage. Once you've made these decisions, you then progress to virtual networking. A
VNet is then used to connect to the network interface (NIC) and the Azure cloud.

If a VNet already exists in the resource group, location, and subscription tenant, then
a VM can use it. This will mean you won't have to deploy a new one just for the VM.
Workload traffic should be discussed as part of the decision to use an existing VNet or
deploy a new one as part of the VM.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance

Diagnostics and advanced options | 439

The VNet will deploy public and private IP addresses to be used by the VM for access.
These addresses must be associated with the VM by assigning them to the NIC. Inside
each VNet, there is a subnet (or subnets) that follows rules for allocating traffic in and
out of the VM. If a rule hasn't been set up to allow traffic through a subnet for a port or
IP address, the traffic is blocked.

The next step in the wizard has options to turn on boot diagnostics, auto-shutdown,
and security settings. The step following this is for advanced settings, including
extensions that provide services such as backups, DevOps, and other extensions to
automate management of the VM.

The SQL Server tab has the important settings to decide the port for the database
to communicate on, the type of database authentication to be used, patching, and
features:

Figure 14.7: SQL Server 2019 settings for a VM image in the Azure portal

440 | Modernization to the Azure Cloud

Once you're satisfied with the settings you've chosen for the VM and your choices have
passed the validation check from Azure, click on the Create button. The VM isn't as
fast to create as it is for an Azure SQL database, but know that this is to do with all the
networking going on behind the scenes. This process takes a bit longer to perform.

Creating a SQL Server 2019 VM from the command line in Azure
After all the steps taken in the previous section to create a VM in the Azure portal,
it's time to realize the power of the command line. The Azure CLI can be accessed in
numerous ways, including through the Azure CLI interface and through the Azure
portal. However, directly using Azure Cloud Shell (https://shell.azure.com/) offers
a full-screen experience that can offer dedicated cloud storage (when configured) to
house scripts and automate common tasks.

The reason to use the command line becomes evident when performing a task multiple
time. The command line simplifies the task into simple lines of code that are easier to
manage and automate than the user interface-based solutions. The user interface, on
the other hand, makes it simpler for those that may not be familiar with the syntax and
requirements, offering them prompts and organizing steps.

The Azure CLI (also referred to as AZ CLI or AZ Commands) is a command-line tool
that when accessed from Azure Cloud Shell can deploy a VM with just a small set of
commands.

The Azure CLI command to create a VM is az vm create, and the arguments in the
following list are used to complete the steps, just as you would in the user interface.
Single-letter arguments have a single dash preceding them, whereas single words have
a double dash. Arguments with more than one word are preceded by a double dash and
separated by a single dash between words, as in --admin-password. The most common
values used for SQL Server VM creation are the following:

•	 -s or --subscription, if you need to specify the subscription for the tenant to
deploy the VM to a subscription different than the subscription you're currently
logged in as.

•	 -n or --name, for the name of the VM.

•	 -g or --group, for the name of the resource group. This must exist or be created
before you create the VM.

https://shell.azure.com/

Creating a SQL Server 2019 VM from the command line in Azure | 441

•	 --image specifies the operating system image.

•	 --location, for the location/zone in which the VM will reside.

•	 --admin-username, for the login of the administrator for the VM.

•	 --admin-password, for the password for the administrator login.

To begin, we need to know the name of the image we want to deploy from the
command line. We can locate the image by querying the Azure catalog:

az vm image list --all \

--publisher MicrosoftSQLServer --output table

The output, formatted as a table rather than the default JSON, looks like this:

Figure 14.8: Output from the az vm image list command

Armed with this information, we can choose the latest image uniform resource name
(URN) and build our VM. We'll provide the last of the information from the list of
arguments for a common Azure VM deployment:

az vm create -n SQL2019vm1 -g SQL2019_grp \

--image MicrosoftSQLServer:SQL2019-WS2016:SQLDEV:15.0.190813 \

--admin-username xxxx@contoso.com --admin-password <password> \

--location eastus --verbose

442 | Modernization to the Azure Cloud

You can enter information onto proceeding lines by using a space and a backslash to
notify the CLI that you are continuing. Once all parameters and values are entered,
the Azure CLI will proceed to create your SQL Server VM from the image chosen, in
the resource group listed, and with the resources from the information entered at the
command line:

Figure 14.9: Successful deployment of an Azure VM from the command line

You can monitor the status of the VM creation in the Azure portal by going to the
resource group you are deploying to and clicking the Refresh button in the ribbon in
the Resource Group Overview pane.

Although the preceding Azure SQL VM deployment did require an existing resource
group and VNet for support, it does demonstrate why it may be easier to deploy the
script we used 20, 50, or hundreds of times with just a few changes instead of using
the Azure portal user interface. With the addition of advanced scripting and DevOps
automation, the process to deploy can be sped up massively, eliminating the need for
manual steps to be performed.

Security for SQL Server on an Azure VM | 443

Security for SQL Server on an Azure VM
VM support in the cloud may be new for those just migrating to Azure and knowing
what to secure can be overwhelming. This can be simplified by enabling advanced data
security on the VMs in your Azure tenant inside the Azure portal. This service will
perform advanced threat protection. It uses the Azure Log Analytics agent to review
and report on any security vulnerabilities. It then documents these vulnerabilities and
suggests how to resolve them in Azure Security Center in the Azure portal. Along with
accessing this information in the portal, notifications are recommended to keep you on
top of any security vulnerabilities.

The Azure Security Center, upon a newly created VM, would detect if port 3389 for
Remote Desktop connection, or if the default port for SQL Server, 1433, was configured
open and report it as a possible security risk. The user could then update the
configuration and secure the default ports.

When creating an Azure VM, the Management tab contains the step to turn on
advanced data security as part of the VM creation process and it's highly advisable to do
so:

Figure 14.10: Management tab in the Create a virtual machine wizard in the Azure portal

444 | Modernization to the Azure Cloud

As this service uses the agent from Log Analytics, this log data is available for querying
for research and investigation. The portal dashboard contains considerable information
even if you aren't into querying the log data, making this service very valuable to anyone
managing VMs and wanting to ensure that the VM cloud environment is secure.

Backups of Azure VM SQL Server instances

There are numerous ways to back up a SQL Server 2019 instance deployed to an Azure
IaaS VM, but automated backups via a service using the SQL Server IaaS agent is one of
the best solutions. Along with configuring the service and agent, cloud storage to back
up to must be configured before backups can be performed. The ease of this solution
becomes apparent when the cloud database administrator finds that they are able to
perform recoveries from SSMS and standard T-SQL commands, as they are accustomed
to with on-premises solutions.

A second choice, no less viable, is the volume snapshot service (VSS) backup for IaaS
VMs, which allows for two backup choices: VSS full backup or VSS copy backup. Where
the full backup takes a one-time backup of the full VM (not just the database), it does
truncate logs that may be required for application backups. The VSS copy backup takes
both a VM snapshot and a full backup of the SQL Server database, which is a great
solution for those still responsible for infrastructure.

Built-in security for Azure VMs

When a cloud migration project is initiated, one of the first topics of discussion is
around cloud security. Azure incorporates numerous layers of security to create an
ecosystem that blankets the cloud with security from end to end.

For Azure VMs with databases, this involves authentication through database logins,
row-level permissions, database roles, Azure Active Directory, and firewall rules. There
are more advanced data protection features, such static data masking, and Transparent
Data Encryption (TDE).

Security for SQL Server on an Azure VM | 445

Azure also makes it easy to set up advanced data security for SQL Server on Azure
Virtual Machines, which is a package of security features that will provide assessment
reports that can be viewed in the Azure portal (and/or emailed):

Figure 14.11: Vulnerability assessment email notification

These reports offer guidance on best practices around security, along with links to
correct any possible threats.

446 | Modernization to the Azure Cloud

SQL Server IaaS agent extension
Unlike the "Full" or "No Agent" options, the SQL Server IaaS agent extension offers you
the ability to have a service agent to manage jobs on the VM, but without a requirement
for SQL Server and must be granted sa privileges to enable.

Although more SQL Server database administrators are building out PowerShell/
shell scripts to address management tasks, the robust and capable agent was clearly
an important feature to have. With the lightweight extension version, which requires
no reboot or privilege requirements for the risk-averse, the agent can perform the
following:

•	 Automatic SQL backups

•	 Automatic SQL patching

•	 Azure Key Vault integration

Installing the extension for lightweight mode in SQL Server 2019 on an Azure VM can be
performed via PowerShell. The first step is to set the variable for the VM host name:

$vm = Get-AzVM -Name <vm_name> -ResourceGroupName <resource_group_name>

Once this is performed, PowerShell can install the extension to the VM host:

New-AzResource -Name $vm.Name -ResourceGroupName $vm.ResourceGroupName

-Location $vm.Location '

 -ResourceType Microsoft.SqlVirtualMachine/SqlVirtualMachines '

 -Properties @{virtualMachineResourceId=$vm.

Id;sqlServerLicenseType='AHUB';sqlManagement='LightWeight'}

Note that each return carriage is marked with a ' symbol. Without this delimiter, the
execution call will fail due to required arguments.

Once installed, these features can be accessed in the Azure portal from the SQL Server
blade.

Viewing the current mode of your SQL Server agent can be performed via PowerShell.
If you are in the same command window as your installation, you won't need to set the
VM variable again, but if you are in a new one, it will need to be set a second time:

$vm = Get-AzVM -Name <vm_name> -ResourceGroupName <resource_group_name>

$sqlvm = Get-AzResource -Name $vm.Name -ResourceGroupName $vm.

ResourceGroupName -ResourceType Microsoft.SqlVirtualMachine/

SqlVirtualMachines

$sqlvm.Properties.sqlManagement

Disaster Recovery environment in the cloud | 447

Disaster Recovery environment in the cloud
One of the most common challenges when moving to the cloud is how often you need
to rethink the way the business may have performed tasks or architected solutions.
Disaster Recovery (DR) is no different.

Azure has numerous high-availability components built into it, but if you choose to
build your environment with virtually managed hosts in the cloud, there are significant
options for DR. Here, we'll discuss the Azure Site Recovery service.

Azure Site Recovery

Azure Site Recovery (ASR) is a versatile service for backing up, cloning, and recovering
data. Considered Azure's Disaster Recovery as a Service (DRaaS), the service is a
hybrid, connecting to both on-premises and cloud VMs, even connecting to VMware
and AWS for migrations to Azure VMs.

The service has a critical role to play for VMs with SQL 2019 databases residing on
them. Once the ASR resource is added to a resource group, VMs can be added and
schedules can be added for all necessary DR functions via a simple wizard:

Figure 14.12: Azure ASR portal interface with backups displayed

448 | Modernization to the Azure Cloud

Once all pertinent information about the VM is entered, the service builds all required
resources to build a fully redundant and robust DR solution in Azure, even in separate
location zones. The best practice would be to have ASR stored in a different location
zone and replicated to a third location for a fully redundant DR solution.

The ASR service offers a simple interface to build backup jobs and replicate VMs, as
well as providing site testing recommendations and failover testing. Although it's fully
possible to build your own backup and DR solution in Azure, the ASR service is feature-
rich and provides a single pane of glass to support an array of IaaS DR needs.

Extended support for SQL 2008 and 2008 R2

As of July 2019, SQL Server 2008 and 2008 R2 have reached the end of their support
life cycle. This should signal for any business to upgrade to a newer version for
sustainability. However, for some cases, due to vendor requirements, moving away from
2008 is not an option.

SQL Server 2008 and 2008 R2 databases can be migrated to an Azure VM with a simple
backup and restore option rather than using a migration tool such as SSMA. The only
way to use one of the existing migration tools, such as DMS, would be to agree to
upgrade to SQL Server 2012 or higher. One of the added benefits of choosing this option
for the end of life of 2008/2008 R2 is that with the Azure VM opportunity there is three
years of extended support included. For more, see the documentation here: https://
azure.microsoft.com/en-us/blog/announcing-new-options-for-sql-server-2008-and-
windows-server-2008-end-of-support/.

https://azure.microsoft.com/en-us/blog/announcing-new-options-for-sql-server-2008-and-windows-server-2008-end-of-support/
https://azure.microsoft.com/en-us/blog/announcing-new-options-for-sql-server-2008-and-windows-server-2008-end-of-support/
https://azure.microsoft.com/en-us/blog/announcing-new-options-for-sql-server-2008-and-windows-server-2008-end-of-support/

Disaster Recovery environment in the cloud | 449

For those customers that must remain on 2008 or 2008 R2, Azure Marketplace has a
pay-as-you-go SQL Server 2008 R2 image that can be used to get them through this
challenging time. The image has the SQL IaaS extension with it for automatic patching
and licensing:

Figure 14.13: Creating a VM from the SQL Server 2008 R2 image

450 | Modernization to the Azure Cloud

Customers that require 2008 can install the software on a VM, along with the SQL IaaS
extension, as it's not part of the standard VM image.

The option to convert to the Azure Hybrid Benefit (AHB) for any SQL Server 2008 R2
image will provide savings over running in Azure without it.

The customer needs to manage their own backup and DR solution in Azure, as it's not
part of the IaaS solution or SQL Server 2008 R2 image. This can be accomplished by
backing up to separate storage or setting up ASR.

This chapter covered numerous topics around SQL Server 2019 in Azure around VMs,
extended support for SQL Server 2008/2008 R2, and making intelligent choices as you
migrate to the cloud. Having the opportunity to know what options and services exist
when considering implementing to the cloud is essential to ensure you do it right the
first time rather than doing it two, three, or four times. This chapter demonstrates that
whether you go for Azure SQL Database, SQL Server 2019 on Azure VMs, or any other
data platform, there are service tiers to support the Microsoft professional inside the
Azure cloud.

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
accounts: 51, 91, 121,

136, 138, 277, 406
ackles:280
adapter:348
ad-based:76
add-port:158
address: 45, 51, 54, 61,

64, 73, 75, 78, 84, 88,
107-108, 179, 186-187,
214, 261, 263, 275, 279,
285, 297, 315, 361, 406,
409, 431-432, 439, 446

adf-hosted:343
admin-cli:151
algorithm: 57-58, 61, 115,

220-222, 244-245
allocating:439
allocation:168
alteration:19
analytics: 2-3, 5, 188-189,

202, 230, 319-320, 332,
346-349, 355-356,
359, 363, 443-444

anomalous:78
apache: 186, 269,

277, 345-346
apiversion:429
applsnr:84
apt-get: 151, 156,

163, 206-207
apt-key:207
arbitrary: 256, 297
areaid: 68-69
arrays:303
artifacts:202
assembly:334
asymmetric:60
atlanta: 288, 294-296
attributes: 46, 417

autosum:371
autotune:438
azdata: 260-261,

274-275, 280-281
azure-ssis: 343-344

B
bandwidth:432
baseline: 53, 242-243,

433-434
bashrc: 151, 160
binaries: 63, 252
binary: 222-223, 237-239,

245, 251-252
blockchain:234
blocksize:117
bookmarks:415
boolean: 305, 374
bucksdata:280
buffer: 2, 24-25,

155-157, 321-322
bulkadmin:54
bundle: 172, 272
bytecode:235

C
caller:232
centos: 143, 145,

150, 160, 164
cheatsheet:261
checkbox: 396, 401
checkdb:126
checklist: 11, 211
checkpoint:156
checksum:116
cipher:73
cityid: 288-289, 293-294
cityname: 288, 294-296
classpath: 237, 240

clause: 238, 266, 292,
294, 321, 325

clonedb: 35-36
cloudapp:163
cloudblogs: 152, 319
cloudera:203
cluster: 74, 83-90, 94,

96, 102-104, 107, 126,
152-153, 180-182, 202,
221, 253-266, 270,
272-281, 339, 343, 427

codebase:126
codedb: 116-117
code-free:338
colindex:5
collation: 180, 198,

309-310, 426, 429-430
column: 3, 20, 33, 39,

41-42, 46-48, 60-62,
64, 67, 198, 231-232,
236, 238, 288, 302, 304,
310, 321, 325, 331-332,
336, 361, 364, 369-371,
373, 376, 378, 401

columnar: 189, 322, 356
columnname:65
columns: 3, 14, 40-41, 48,

50, 61-62, 64-65, 164,
189, 198-199, 222, 232,
303-304, 310-311, 314,
321-323, 325, 330-332,
342, 367, 369-372, 375,
377-378, 398, 401

companyid: 294, 296
compiler: 143, 300
compilers: 234, 298
concurrent: 325, 360
configname: 208, 214
connector:204
construct: 88, 303, 417
contoso: 100-101, 441

controller: 24, 210,
261, 279-280

counter:321
credential: 112-113,

116, 119-120, 123,
191-192, 195-196

credit:64
cumulative:92
curation:190
cursors: 25, 29
cutoff:434
cutover:88
cyrillic:429

D
daemons:242
dashboard: 53, 77, 188,

275, 368, 421, 444
database: 2, 5, 7, 16-18,

21-22, 24-26, 28-36,
39, 41, 45-49, 51, 54-62,
66-67, 71-72, 74-79,
81-84, 88, 91-93, 95,
97, 112, 116-119, 121-124,
126-129, 133, 138,
141, 143-145, 151-159,
161-163, 165-166, 168,
171, 177, 180, 186, 189,
191-197, 199-200, 202,
215, 220, 223, 230, 232,
237, 239, 241-242, 245,
249, 251, 260, 265-266,
269, 273, 277, 285, 287,
289-290, 300, 307, 310,
315, 320, 324, 328-331,
333, 339, 341-344,
346, 352, 356-358,
363-365, 368, 376, 382,
384-385, 387, 394-395,
423-424, 426, 430-436,
438-440, 444, 446, 450

databaseid:39
datacenter: 105, 259, 384
datacolors:400
datafiles: 118, 157
datareader:76
dataset: 188, 220,

236-237, 244, 301, 303,
339, 342, 363, 368,
391-392, 403-404, 417

datesytd:371
datetime: 19, 199,

308-309, 311-312
dbname:157
dbserver:158
ddladmin:55
debian: 143, 160, 164, 207
debugger:62
debugging: 39, 338, 375
decode:307
decoupled:334
decryption: 55, 58, 60
delimchar: 302, 304, 306
delimiter: 267, 300,

302, 306, 446
deltas:243
deployment: 111, 152-154,

166, 173-174, 182, 204,
208-210, 245-246,
258-261, 269, 278-279,
364, 386, 395, 425,
427-428, 430-431,
436, 438, 441-442

devdax:156
devicedata: 308-309
deviceid: 308-309
devicejson:308
devops: 145, 166, 173,

283, 427, 439, 442
directive:19

directory: 75, 84, 86,
99, 103, 160-161, 163,
165-168, 206, 235, 267,
269, 275, 277, 279-280,
299-300, 305, 376,
383-384, 400, 424, 444

docker: 144, 152, 154,
163, 173-176, 178-181,
202, 206-208, 216,
252-253, 283, 435

dockerfile: 206-207
dsmith:166
dtcreated: 19-20
duedatekey:323

E
ellipsis: 400, 408, 417
ellipsoid:315
emulator:167
enclaves: 46, 61-63
encodings:197
encryption: 45, 55-62,

64, 67, 73-74, 191, 228,
242, 383, 394, 433, 444

encryptor:58
encrypts:55
endpoint: 75, 86, 92, 126,

151, 157, 175, 261, 267,
272, 280, 343, 425

ephemeral: 174, 177, 438
equi-join:325
equi-joins:325
executor:277
extensible: 60, 232,

284, 320
extension: 112, 223, 226,

235, 262, 297, 300-301,
306, 344, 364, 383,
392, 401, 446, 449-450

F
file-based: 186, 189
filegroup: 16-18
filegroups: 324, 424
filegrowth:17
fileid:39
filename: 17, 121,

124, 157, 163
filepath:71
file-read:230
filestream:122
filesystem: 266, 345
firewall: 75, 149, 157-158,

162, 196-197, 212,
342, 382-383, 444

framework: 219, 223,
226-227, 229-230,
242, 244, 249, 272,
283, 296-297, 332

G
geocoding:397
geodesy:314
geodetic:315
geogcs:315
get-azvm:446
getdate: 124, 313
getname: 301-302
grafana:275
granfana:275
gzipped:160

H
hadoop: 144, 190, 193,

203-204, 209, 250,
255, 279, 332, 339, 345

hierarchy: 24, 56-57,
60, 166, 418

hybrid: 2-3, 24-25, 83,
111-112, 118, 125, 155-157,
188, 246, 265, 447, 450

hyper-v:174
hypervisor: 62-63,

82, 172, 250
hypothesis:219

I
iaas-based:108
intellij: 269, 272
intra-node:104
intrinsic:186
intvalue:303
iotdata: 308-309
iptables:168
iterative:338

J
javajars:237
javascript:307
jenkins:166
join-based:61
jre-home:225
jrj-sql:214
jumpbox:433
jupyter: 150, 262,

269-270, 286

K
kerberos: 191, 280
kernel: 165-167, 172,

262, 269-271
keytab:280
key-value:193
keyword: 378-380
kibana:276
kilobytes:360

k-means: 222, 238, 244
kubeadm: 259-260
kubectl: 254, 261, 264,

266, 269, 273-275
kubernetes: 150, 152-154,

171, 173, 180-182, 209,
253-256, 258-261, 273

L
library: 63, 234, 237,

240-241, 300, 305, 369
linkedlist: 236, 301-302
linux-: 83, 89, 91
localhost: 157, 179, 360
loginid:328

M
margin:378
mariadb:194
maxsize: 17, 71
megabytes:175
memcpy:155
memoptdb: 17, 19
metadata: 14, 21-22, 46,

49, 155, 192, 328, 333
minikube: 259-260
modules: 21, 240
mongodb: 193, 432
msprod:149
mssql-cli: 163-164
mssql-conf: 83, 99,

147, 158, 180
multi-line:165
mymemopt:5
mypackage:241
mytable: 95, 97
mytext: 312-313
mywsfc:84

N
namespace:156
namesplit: 301, 305-306
n-grams:234
noatime:156
nodecount: 288-289,

293-294
nolastname:301
no-sql:1
nostats:36
nvarchar: 20, 198,

265, 301, 304-306,
308-309, 315

O
offset:188
openjdk:225
openjson: 307-308
outset:278
outval: 302-303

P
pacemaker: 84-85, 87,

89-90, 180-181
package: 146, 151, 163, 206,

225, 235, 237, 240-241,
255, 301, 305, 321-322,
338, 343-344, 445

padding:64
pageid:39
paginated: 351, 390-392,

401, 407, 409, 411, 420
paradigm:152
parity: 106-107
parquet: 186, 189,

197, 256, 267
patching: 172, 430,

436, 439, 446, 449

petabyte:255
plaintext:61
polybase: 144, 190-191,

196, 198, 201-214,
216, 255, 266-267,
335, 342, 345, 348

postgres: 194-195, 199
postgresql: 192,

194-197, 432
post-sql:92
power-bi: 350-352, 390,

395, 397-398, 400-401,
410, 412, 414, 418

powershell: 83, 103-105,
154, 165-166, 338,
382-383, 427-428, 446

println: 302-303
productkey:323
protocols: 73-74
prototype:190
pyspark: 223, 262,

269-270
python: 150-152,

222-223, 225, 229-230,
232-235, 237-242, 245,
250-252, 260-261,
264, 272-273, 283,
296-297, 319, 338, 346

Q
querystore: 35-36

R
redhat: 143, 147,

150-151, 160
regexexpr: 302, 306
regression: 25, 29-31,

152, 238, 244
regulatory: 45-46

revo-r:230
revoscaler: 238-239
rohrer:221
router:104
routing: 89, 97-98,

100-101, 272, 425
rowcount:302
rowgroup: 3-4
rowguid:199
row-level: 45, 67, 319,

365, 375, 381, 383,
398, 400, 444

rowset:361
rowstore:323
rpcport: 157-158
rsenal:207
rxpredict: 239, 245

S
scheduler:338
serverless:347
servername: 179, 192
signature: 112, 114-116, 120
sparkml: 223, 273
sparkr: 223, 269-270
spatial: 314-316
sqladmin:55
sqlagent:99
sqlaudit:72
sqlbackups: 114, 116-117
sqlbigdata:266
sqlclassic:126
sqlcmd: 149-150, 157-158,

163-164, 179
sqldata: 17, 178
sqldev:441
sqlengine:205
sqlgraphdb: 287, 289-290
sqlhdfs:268
sqljdbc:158

sql-only:95
sqlserver: 58, 152,

236, 281, 301, 319
sql-server: 35, 284
sqlservr: 118, 149, 175, 207
sslmode: 195-196
stateless:438
subnet: 75, 210-211,

424-426, 433, 439
subnetid: 428-429
symlink:148
sysadmin:279
sysendtime:312
sysfiles:121
sysname:68
systemctl: 99, 148,

156, 158, 206

T
testjava: 301, 306
testutf:310
text-based:267
toolkit:272

U
ubuntu: 85, 143-144,

150-151, 154,
159-160, 162-164,
180, 205-207, 436

userdata:266
userfilter:68
utfdata:310

V
varbinary:239
varchar: 64-65, 72,

124, 231, 268, 288,
291, 294, 304-305,
309-310, 312-313, 316

variable: 231-232, 235,
237, 239, 294, 298-299,
321, 380, 446

vmname:163
vmware:447
vnext-ctp:147

W
wrapper:181
wsfc-based:84

X
xevents:384

	Cover
	FM
	About the Authors
	Table of Contents
	Preface
	Chapter 1: Optimizing for performance, scalability and real‑time insights
	Hybrid transactional and analytical processing (HTAP)
	Clustered Columnstore Indexes
	Adding Clustered Columnstore Indexes to memory-optimized tables

	Disk-based tables versus memory-optimized tables
	In-memory OLTP
	Planning data migration to memory-optimized tables
	Natively compiled stored procedures
	TempDB enhancements
	Enabling memory-optimized TempDB metadata
	Limitations of memory-optimized TempDB metadata

	Intelligent Query Processing
	Hybrid Buffer Pool
	Query Store
	Changes to default parameter values
	QUERY_CAPTURE_MODE
	QUERY_CAPTURE_MODE: CUSTOM
	Support for FAST_FORWARD and STATIC Cursors

	Automatic tuning
	Automatic plan correction

	Lightweight query profiling
	New functionality in 2019
	sys.database_scoped_configurations
	Activity monitor

	Columnstore stats in DBCC CLONEDATABASE
	Columnstore statistics support
	DBCC CLONEDATABASE validations
	Understanding DBCC CLONEDATABASE syntax

	Estimate compression for Columnstore Indexes
	sp_estimate_data_compression_savings Syntax

	Troubleshooting page resource waits
	sys.dm_db_page_info
	sys.fn_pagerescracker

	Chapter 2: Enterprise Security
	SQL Data Discovery and Classification
	SQL Vulnerability Assessment
	Transparent Data Encryption
	Setup
	New features – suspend and resume
	Extensible Key Management

	Always Encrypted
	Algorithm types
	Setup

	Confidential computing with secure enclaves
	Dynamic Data Masking
	Types
	Implementing DDM

	Row-Level Security
	Auditing
	Securing connections
	Configuring the MMC snap-in
	Enabling via SQL Server Configuration Manager

	Azure SQL Database
	SSL/TLS
	Firewalls
	Azure Active Directory (AD) authentication
	Advanced data security
	Advanced threat detection

	Chapter 3: High Availability and Disaster Recovery
	SQL Server availability feature overview
	Backup and restore
	Always On features
	Log shipping

	What About Database Mirroring and Replication?
	Availability improvements in SQL Server 2019
	Accelerated database recovery
	Configuration-only replica
	Certificate management in SQL Server Configuration Manager
	Clustered columnstore index online rebuild
	Database scoped default setting for online and resumable DDL operations
	Failover Cluster Instance Support for Machine Learning Services
	Increased number of synchronous replicas in the Enterprise edition
	Online builds or rebuilds for Clustered Columnstore Indexes
	Read-only routing configuration in SQL Server Management Studio
	Replication for Linux-based configurations
	Secondary-to-primary read/write connection redirection

	Windows Server 2019 availability enhancements
	Changing domains for a Windows Server Failover Cluster
	Cluster Shared Volumes support for Microsoft Distributed Transaction Coordinator
	File share witness without a domain
	Improved Windows Server Failover Cluster security
	Storage Replica in the Standard edition
	Storage Spaces Direct two-node configuration
	Windows Server Failover Cluster improvements in Azure

	Chapter 4: Hybrid Features – SQL Server and Microsoft Azure
	Backup to URL
	Benefits
	Requirements

	The storage account
	Setup

	SQL Server data files in Azure
	Setup and concepts
	Considerations

	File-snapshot backups
	Setup

	Extending on-premises Availability Groups to Azure
	Replication to Azure SQL Database
	Classic approach

	Transactional replication
	Prerequisites
	Setup

	Chapter 5: SQL Server 2019 on Linux
	2019 platform support
	Why move databases to SQL Server on Linux?
	Installation and configuration
	Improvements in SQL Server 2019

	Machine Learning Services on Linux
	Kubernetes
	Working with Docker and Linux
	Change data capture
	Hybrid Buffer Pool and PMEM
	Distributed Transaction Coordinator on Linux
	Replication
	SQL Server tools
	Azure Data Studio

	Command-line query tools for SQL in Linux
	SQLCMD
	MSSQL-CLI

	Enhanced focus on scripting
	The SQL DBA in the Linux world
	Users and groups
	Azure Cloud Shell

	Windows Subsystem for Linux
	Root, the super-user

	Chapter 6: SQL Server 2019 in Containers and Kubernetes
	Why containers matter
	Container technical fundamentals
	Deploying an SQL Server container using Docker
	Using Docker and Bash
	Using local SQL Server utilities

	Customizing SQL Server containers
	Availability for SQL Server containers

	Chapter 7: Data Virtualization
	Data integration challenges
	Introducing data virtualization
	Data virtualization use cases
	Data virtualization and hybrid transactional analytical processing
	Data virtualization and caching
	Data virtualization and federated systems
	Data virtualization and data lakes

	Contrasting data virtualization and data movement
	Data virtualization in SQL Server 2019
	Secure data access
	The database master key
	Database scoped credentials

	External data sources
	Supported data sources
	Extending your environment using an ODBC external data source
	Accessing external data sources in Azure

	External file formats
	PolyBase external tables
	Creating external tables with Azure Data Studio
	Contrasting linked servers and external tables

	Installing PolyBase in SQL Server 2019
	General pre-installation guidance
	Installing PolyBase on Windows
	Installing PolyBase on Linux
	Installing PolyBase on SQL Server running in Docker
	Post-installation steps

	Installing PolyBase as a scale-out group
	Tip #1: Use different resource groups for each part of the architecture
	Tip #2: Create the virtual network and secure subnets before building virtual machines
	Tip #3: Place your scale-out group SQL Server instances inside one subnet
	Tip #4: Complete this pre-installation checklist!
	Scale-out group installation

	Bringing it all together: your first data virtualization query

	Chapter 8: Machine Learning Services Extensibility Framework
	Machine learning overview
	How machine learning works
	Use cases for machine learning
	Languages and tools for machine learning

	SQL Server 2019 Machine Learning Services architecture and components
	Components
	Configuration

	Machine learning using the Machine Learning Services extensibility framework
	R for machine learning in SQL Server 2019
	Python for machine learning in SQL Server 2019

	Java and machine learning in SQL Server
	Machine learning using the PREDICT T-SQL command
	Machine learning using the sp_rxPredict stored procedure
	Libraries and packages for machine learning
	Management
	Security
	Monitoring and Performance

	Using the team data science process with Machine Learning Services
	Understanding the team data science process
	Phase 1: Business understanding
	Phase 2: Data acquisition and understanding
	Phase 3: Modeling
	Phase 4: Deployment
	Phase 5: Customer acceptance

	Chapter 9: SQL Server 2019 Big Data Clusters
	Big data overview
	Applying scale-out architectures to SQL Server
	Containers
	Kubernetes
	SQL Server on Linux
	PolyBase

	SQL Server 2019 big data cluster components
	Installation and configuration
	Platform options
	Using a Kubernetes service
	Using an on-premises Kubernetes installation
	Working with a Dev/Test environment
	Deploying the big data clusters on a Kubernetes cluster

	Programming SQL Server 2019 big data clusters
	Azure Data Studio
	Relational operations
	Creating scale-out tables
	Creating a data lake
	Working with Spark
	Submitting a job from Azure Data Studio
	Submitting a Spark job from IntelliJ
	Spark job files and data locations

	Management and monitoring
	SQL Server components and operations
	Kubernetes operations
	SQL Server 2019 big data cluster operations
	Monitoring performance and operations with Grafana
	Monitoring logs with Kibana
	Spark operations

	Security
	Access
	Security setup and configuration
	Authentication and authorization

	Chapter 10: Enhancing the Developer Experience
	SQL Graph Database
	Why use SQL Graph?
	Edge constraints
	SQL Graph data integrity enhancements
	SQL Graph MATCH support in MERGE
	Using a derived table or view in a graph MATCH query

	Java language extensions
	Why language extensions?
	Installation
	Sample program

	JSON
	Why use JSON?
	JSON example

	UTF-8 support
	Why UTF-8?

	Temporal tables
	Why temporal tables?
	Temporal table example

	Spatial data types
	Why spacial data types?
	Dealer locator example

	Chapter 11: Data Warehousing
	Extract-transform-load solutions with SQL Server Integration Services
	Best practices for loading your data warehouse with SSIS

	Clustered Columnstore Indexes
	Partitioning
	Online index management
	Enabling online DML processing
	Resuming online index create or rebuild
	Build and rebuild online clustered columnstore indexes
	Using ALTER DATABASE SCOPE CONFIGURATION

	Creating and maintaining statistics
	Automatically managing statistics
	The AUTO_CREATE_STATISTICS option
	The AUTO_UPDATE_STATISTICS option
	The AUTO_UPDATE_STATISTICS_ASYNC option

	Statistics for columnstore indexes
	Modern data warehouse patterns in Azure
	Introduction to Azure SQL Data Warehouse
	Control node
	Compute nodes
	Storage
	Data movement services (DMSes)

	Best practices for working with Azure SQL Data Warehouse
	Reduce costs by scaling up and down
	Use PolyBase to load data quickly
	Manage the distributions of data
	Do not over-partition data

	Using Azure Data Factory
	New capabilities in ADF
	Understanding ADF

	Copying data to Azure SQL Data Warehouse
	Hosting SSIS packages in ADF
	Azure Data Lake Storage
	Key features of Azure Data Lake Storage Gen2

	Azure Databricks
	Working with streaming data in Azure Stream Analytics
	Analyzing data by using Power BI – and introduction to Power BI
	Understanding the Power BI ecosystem
	Connecting Power BI to Azure SQL Data Warehouse

	Chapter 12: Analysis Services
	Introduction to tabular models
	Introduction to multidimensional models
	Enhancements in tabular mode
	Query interleaving with short query bias
	Memory settings for resource governance
	Calculation groups
	Dynamic format strings
	DirectQuery
	Bidirectional cross-filtering
	Many-to-many relationships
	Governance settings for Power BI cache refreshes
	Online attach

	Introducing DAX
	Calculated columns
	Calculated measures
	Calculated tables
	Row filters
	DAX calculation best practices

	Writing DAX queries
	Using variables in DAX
	Introduction to Azure Analysis Services
	Selecting the right tier
	Scale-up, down, pause, resume, and scale-out
	Connecting to your data where it lives
	Securing your data
	Using familiar tools
	Built-in monitoring and diagnostics
	Provisioning an Azure Analysis Services server and deploying a tabular model

	Chapter 13: Power BI Report Server
	SSRS versus Power BI Report Server
	Report content types
	Migrating existing paginated reports to Power BI Report Server
	Exploring new capabilities
	Performance Analyzer
	The new Modeling view
	Row-level security for Power BI data models
	Report theming

	Managing parameter layouts
	Developing KPIs
	Publishing reports
	Managing report access and security
	Publishing mobile reports
	Viewing reports in modern browsers
	Viewing reports on mobile devices
	Exploring Power BI reports
	Using the FILTERS panel
	Crossing-highlighting and cross-filtering
	Sorting a visualization
	Displaying a visualization's underlying data
	Drill-down in a visualization

	Automating report delivery with subscriptions
	Pinning report items to the Power BI service

	Chapter 14: Modernization to the Azure Cloud
	The SQL data platform in Azure
	Azure SQL Database managed instance

	Deployment of a managed instance in Azure
	Managed instance via the Azure portal
	Managed instance via templates

	Migrating SQL Server to Managed Instance
	Azure Database Migration Service (DMS)
	Application Connectivity
	Requirements for the DMS
	Data Migration Assistant
	Managed Instance Sizing
	Migration
	Monitoring Managed Instance
	SQL Server in Azure virtual machines

	Creating an Azure VM from the Azure portal
	Storage options for VMs
	Diagnostics and advanced options
	Creating a SQL Server 2019 VM from the command line in Azure
	Security for SQL Server on an Azure VM
	Backups of Azure VM SQL Server instances
	Built-in security for Azure VMs

	SQL Server IaaS agent extension
	Disaster Recovery environment in the cloud
	Azure Site Recovery
	Extended support for SQL 2008 and 2008 R2

	Index

